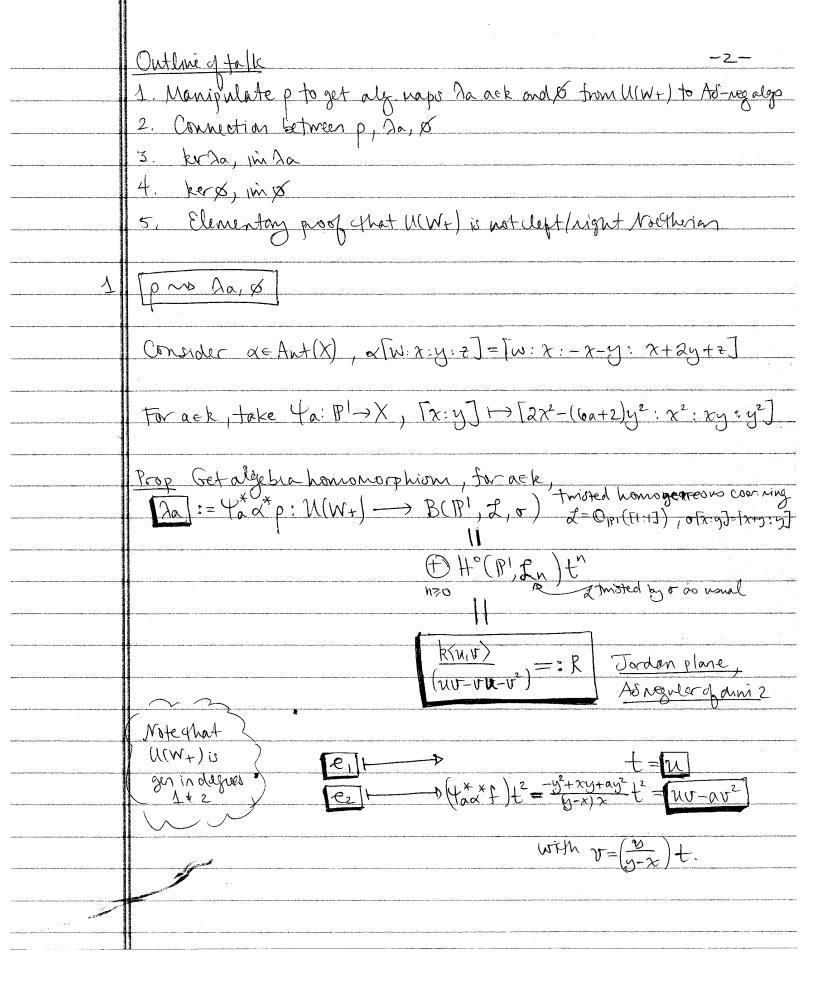
UW Seattle	
Aug 8,2015	Title of preprint: "Maps from the enveloping algebra of the positive Witt algebra to regular algebras" [thomsomo(phisms from enveloping alg of positive Witt algebra]
	foint noch in preparation with fre Sierra. [chk=0] arXiv:1508.05294
٥.	motivation
	Definition [Virasoro algebra](V) = Lie algebra noth basis ?enJnez v?c9 and Lie bracket [en,c]=0, [en,em]=(m-n)en+m+1z(m-m)onm,o
	[Wittalgeha] (W) = Lie algebra nith basis ?en Jnez and Lie bracket [en, em] = (m-n)-entm
	[positive Witt algebra] (W+) = Lie subalgebra of W generated by ?enJn=1.
	[Sierra-W] ((W+), N(W), N(K) are not left nor right Northerian.
	Method: used geometric map (P: U(W+) -> k(X)[t; T] skew } et +> t ex +> ft2
	where $X = V(\chi_z - y^2) \subseteq P_{[w:\chi:y:z]}^3$ $T \in Aut(X)$ $T[w:\chi:y:z] = [w-2\chi+2z:z:-y-2z:\chi+4y+4z]$ $f = \frac{w+12\chi+2zy+8z}{12\chi+6y} \in k(\chi)$
	and showed (through paralleductions) that $p(u(w_t)) \text{ is not left / right Noetherian}$
	~ pame is true for $\mathcal{U}(W_t)$, $\mathcal{U}(W)$, $\mathcal{U}(V)$.
	But Flis not so easy to understand!



¥	- 5 -
	Now consider in: $\mathbb{P}^1 \longrightarrow \mathbb{P}^2$, $[x:y] \longmapsto [x:y:ay]$ for a $\in \mathbb{R}$
	This induces algebra map
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	Aðrugular $K(u,v,w)$ Tyduni 3 $(uv-vu-v^2)=:S$ $(vv-vu-v^2)=:S$ $(vv-vu-v^2)=:S$ $(vv-vu-v^2)$ $(vv-vu-vu-v^2)$ $(vv-vu-vu-v^2)$ $(vv-vu-vu-vu-vu-v^2)$ $(vv-vu-vu-vu-vu-vu-vu-vu-vu-vu-vu-vu-vu-v$
	Prop Get algebra homomorphism $(\varnothing: U(W_1) \longrightarrow S, \ e_n \mapsto (n-(n-1)w)v^{n-1} \ n \ge 1$ So that $\Im a = \Im a \circ \emptyset$
2	
	Prop: \kerp = \frac{(1)}{aek} \ker\a_* = \ker\delta
	PF/(statch) • $h \in U(W_+)_n = p(h) = gt^n$ for home $g \in k(X)$ (1) \geq • $\lambda a(h) = 0$ $\forall a \in k = g$ raniones on a personal set $g(X) = g = 0$ (1) \leq • $\lambda a = t^* \alpha^* f$, so clear.
	(2) = \(\lambda = \tao \ighta \), po clear (2) \(\subset \) \(\text{Curves} \) \(\frac{1}{2} = ay \) cover an opin subset of \(\text{P}^2 \) \(\text{Q} \in \text{k} \)

(Elementary proof that WW+) is not eleft bright Nootherian ker (λo: U(W+) → R) is not fin gen as a left (right ideal of U(W+)) Recall ker 30 = (e, e3-e2-e4) M(M+) (u-n-1)w)vn-1 WVN-1 Notation: p:= 0(e,e3-e2-e4) B= ims $T:=(p)=\phi(kr\lambda_0)$ Q= Subalg of Ser by with Facts & p = v3w- 12w2 D'y is a normal est of I, and of Q Note: kar 20 finger as clept/right of W(W+) => I fin gen as clept/right of B ~ STS BI and IB are not fruitely generated Puillonly okas this, statement for IB holdo in smiler pashion By way of contradiction, suppose that BI is finitely generated.

deg(p)=4 => In>4 so that BI=n=I. $M(W_t)$ generated in degrees $1,2 \Rightarrow$ $T_{n+1} = B_1 T_n + B_2 T_{n-1} = u T_n + (u-w)v T_{n-1}$ Coet [Inti = NSy + (N-W)Sp = NSp + WSp.] (x) US+WS does not contain à positive power qu' by direct computation But vn-3p e Qp)nt1 = Int1 Now The Inti E Nortwop, which contradicts (xx)