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Abstract

The (n)-solvable filtration of the link concordance group and

Milnor’s fi-invariants

by

Carolyn Otto

We establish several new results about the (n)-solvable filtration, {F;*}, of the
string link concordance group C™. We first establish a relationship between (n)-
solvability of a link and its Milnor’s f-invariants. We study the effects of the Bing
doubling operator on (n)-solvability. Using this results, we show that the “other
half” of the filtration, namely F7%/F7" , is nontrivial and contains an infinite cyclic
subgroup for links with sufficiently many components. We will also show that links
modulo (1)-solvability is a nonabelian group. Lastly, we prove that the Grope filtra-

tion, G of C™ is not the same as the (n)-solvable filtration.
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Chapter 1

Introduction

1.1 Background

A link L (with m components) is an embedding L : [[, S* < S3. A link with one
component is called a knot. In the late 1950’s, Fox and Milnor introduced the idea
that the concordance classes of links and that these classes were an obstruction to
the removal of a link singularity. In doing so, they investigated the notion of a knot
being slice. In other words, whether or not a knot bounds a smooth disk in B%. If
the link of a singularity is slice, then we can replace this singularity with a smooth
disk.

An equivalence relation on knots in S3 can be defined by using slice knots: K ~ J
if K# — J is slice. The knot concordance group C was introduced by Fox and Milnor
in 1966 [FM66] using this equivalence on the set of knots. Two knots, K and J are
said to be concordant if K x {0} and J x {1} cobound a smoothly embedded annulus

in S x [0,1]. If a knot is slice, it is in the identity class of this group. This abelian



group is a well studied object in low-dimensional topology, however there is much
that is still unknown about the structure of C. Thus C has remained an active object
of study since its introduction.

Here we are particularly interested in the group of concordance classes of string
links called the string link concordances group, which is denoted C™.

In order to infrestigate the structure of this group, Cochran, Orr and Teichner
introduced two filtrations of this group: the (n)-solvable filtration, {F*} and the
Grope filtration, {G™} [COTO03]. The notion of (n)-solvability can be thought of as
an algebraic approximation to a link being slice (or “0” in C™). Gropes, on the other
hand, are more geometric in nature and can be thought of as geometric approxima-
tions to slicing disks. In [COTO03], it was shown that these two filtrations are related
forallmn € Nand m > 1 by G, C F7.

Much work has been done in the quest of understanding the (n)-solvable filtration.
In particular, many have studied successive quotients of this filtration and some of
their contributions can be found in [Chal0], [CHO08], [CHL09], [Har08].

For example, Harvey first showed that F*/F" ; is a nontrivial group that con-
tains an infinitely generated subgroup [Har08]. She also showed that this subgroup
is generated by boundary links (links with components that bound disjoint Seifert
surfaces). Cochran and Harvey generalized this result by showing that F*/F™ con-
tains an infinitely generated subgroup [CHO8|. Again, this subgroup consists entirely
of boundary links.

Since C™ is a nonabelian group for m > 2 [LD88|, questions were raised about

whether or not successive quotients of {F*} would be abelian. Let F™ 5 denote the



set of (string) links that have all pairwise linking numbers equal to zero. It is known
that F™ 5/ FJ" is an abelian group while C™/FI" is nonabelian. For quotients of the

higher terms in the filtration, it is unknown whether or not they are abelian.

1.2 Summary of Results

Let L be an m-component link in S® and G = m(S® — L). The n'* term of the
lower central series of a group G, denoted G,, is inductively defined by G, = G and
G, = [Gn_1, G], where the latter group is generated by elements of the form aba =571
for a € G,_; and b € G. Milnor invariants, denoted fi, can be thought of as “higher-
order” linking numbers between components of a link ( [Mil54], [Mil57]). These are
known to be invariant under concordance and measure how deeply the longitudes of
each component of a link L lie in the lower central series of the link group G.

Up to this point, little has been known about the relationship of Milnor’s invariants

and (n)-solvability. We establish the following relationship.

Theorem 3.7. If L is an (n)-solvable link with m components, then fr(I) = 0 for

1] < 272 — 1.

In other words, if a link is (n)-solvable, then all of its fi-invariants will vanish for
lengths less than or equal to 2"*2 — 1. Moreover, this theorem is sharp in the sense
that we exhibit (n)-solvable links with () # 0 for |I| = 2"+2.

A common “doubling operation” of links is Bing doubling, depicted in Figure 1.1.

This operator doubles the number of components of the original link.






Since the knot concordance group, C, is abelian, all successive quotients of the
(n)-solvable filtration are abelian. However, it is known that C™ is nonabelian for

m > 2 [LD88]. We have have shown that certain successive quotients are not abelian.
Theorem 5.3. F™, . /F"* is nonabelian for m > 3.

Similar to the relationship between (n)-solvability and f-invariants, we establish
a relationship between fi-invariants and a link in which all of its components bound
disjoint gropes of height n. This relationship says that if all components of a link
bound disjoint gropes of a certain height, then its i invariants vanish for certain

lengths.

Corollary 6.7. A link L with components that bound disjoint Gropes of height n has

ar(I) =0 for |I| < 2"

A result of Lin [Lin91] states that k-cobordant links will have the same fi-invariants.
Using this result, the proof of this proposition relies on showing that L is 2"*!-
cobordant to a slice link.

The two filtrations are related by the fact that G, C F* for all n € N and
m > 1 [COTO03]. A natural question is whether or not these filtrations are actually

the same. We show that these filtrations differ at each stage.

Corollary 6.9. F*/G" , is nontrivial for m > 2"+2. Moreover, Z C FI*/G™,.



1.3 Outline of Thesis

In Chapter 2 we review the string link concordance group, C™ and the (n)-solvable
filtration, {F*} defined by Cochran, Orr and Teichner. This filtration is very alge-
braic in nature. We also demonstrate properties of links in this filtration, known as
(n)-solvable links.

In Chapter 3 we give the definition of Milnor’s fi-invariants of links. We discuss
when these invariants vanish and when they are additive. We establish a relationship
between fi-invariants and (n)-solvability.

In Chapter 4 we examine the definition of Bing doubling using infection by a
string link. We investigate the effects of Bing doubling on links in various levels of
the (n)-solvable filtration.

In Chapter 5 we give applications of the relationship between i and {F*} found
in Chapter 3. This chapter focuses on the structure of successive quotients of {F*}.
We show nontriviality in one such quotient and investigate the commutivity in other
quotients using results from previous chapters.

In Chapter 6 we define another filtration of C™ know as the Grope filtration, {G™}
which is more geometric than {F™}. We establish a relationship between fi-invariants
and links in this filtration. Finally, we showed that these two filtrations are different

by showing that the quotient F*/G is nontrivial for certain m.



Chapter 2

(n)-Solvable Filtration

2.1 String Link Concordance Group

A knot is an embedding S! <+ S3. Two knots, K and J are said to be concordant if
K x {0} and J x {1} cobound a smoothly embedded annulus in S3 x [0, 1]. The set
of knots modulo concordance forms a group under the operation of connected sum,
known as the knot concordance group C. This group is known to be an abelian group.
A link is a generalization of a knot in which it may have more components. More
specifically, an m-component link is an embedding [], . S* — S3. It is apparent
that a link of one component is precisely a knot. The connected sum operation is not
well defined for links. Therefore, in order to define a group structure on links, it is
necessary to study string links. We will give the definition of string links stated by

Habeggar and Lin in [HL90].

Definition 2.1. Let D be the unit disk, I the unit interval and {p1,ps,...,pr} be

k points in the interior of D. A k-component string link is a smooth proper

7
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2.2 The (n)-Solvable Filtration

A filtration of a group is a nested sequence of normal subgroups. Often, filtrations of
a group are used to study the structure of that group. In order to study the structure

of C™, Cochran, Orr and Teichner [COT03] defined the (n)-solvable filtration, {F},
{0}c---CFL CFsCFC---CFys CFqr CC™.

Before the definition of (n)-solvability is given, we recall a few definitions.

Definition 2.5. Let G® denote the i** term of the derived series of a group G
that is inductively defined by G := G and G(*Y := [G®), GD]. The latter group is

generated by elements of the form aba='b~! for a,b € G®.

Definition 2.6. Let L be a link an m-component link in S3. The zero-framed

surgery of L, denoted My is given by
My = (S*—=N(L)) Uy [(S* x D) U---U (S* x D?)]

where h : U 9(S* x D?) — 9(8® — N(L)) is the map which sends the meridian

wi = {pt} x D? to the i** longitude I; of S3 — N(L).

Definition 2.7. An m-component link L is (n)-solvable if the zero-framed surgery,
M, bounds a compact, smooth 4-manifold, W*, such that the following hold:
i) Hy(Mp;Z) = Z™ and H,(ML) — H;1(W;Z) is an isomorphism induced by the

inclusion map;
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ii) H,(W;Z) has a basis consisting of connected, compact, oriented surfaces,
{L;, D;}i_,, embedded in W with trivial normal bundles, wherein the surfaces are
pairwise disjoint except that, for each ¢, L; intersects D; transversely once with posi-
tive sign;

. _ n) . (n)
) 1 1 1 .
iii) For all 4, m(L;) C my (W)™ and my(D;) C m (W)

The manifold W is called an (n)-solution for L and a string link is (n)-solvable
if its closure in S® is an (n)-solvable link.

A link is (n.5)-solvable if, in addition to the above, 7;(L;) C m (W)™ +Y for all
i. In this instance, W is called an (n.5)-solution for L.

The notion of (n)-solvability can be thought of as an algebraic approximation to
a link being slice, or the identity in C™.

For all m > 1, the (n)-solvable filtration of the string link concordance group
is defined by setting F;* to be the set of (n)-solvable links, L in S3 for n € $N,.
It is known that F]* is a normal subgroup of C™ for all m > 1 and n € %No. For
convenience’s sake, F,  will denoted the set of links with all pairwise linking numbers
equal to zero. It is worth noting that if L € C™, then L and L have all the same

pairwise linking numbers.

2.3 Properties of (n)-Solvable Links

In this section, we will give two properties of (n)-solvable links that will be used in

later chapters.

Proposition 2.8. If L is an (n)-solvable link, then every sublink of L is an (n)-
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solvable link.

Proof. Suppose L = Ly U Ly U---U Ly, is an (n)-solvable, m-component link and let
W be its (n)-solution. Consider the sublink of L, J = Ly U--- U Ly,, obtained by
omitting the L, component. We will create a cobordism, X, between M; and M|,
such that X UW is an (n)-solution for J.

Consider a new link, L', obtained from L by performing a zero-framed surgery on
the meridian, p of Ly, which we will refer to as a “helper circle” (see Figure 2.4(a)).
By performing handle slides, we see that the new 3-manifold is the same as the on
in Figure 2.4(b). Since zero-framed surgery on the Hopf link is homeomorphic to S3,
zero-framed surgery on L’ is in fact the manifold M.

/_O\&O’_)u : O

I 7

0

(a) Adding a “helper circle” p (b) Separation of link compo-
nents

Figure 2.4: A “helper circle” added to L and the separation of the components
resulting in a new link J

By adding the “helper circle” to L', we are adding a 2-handle, D = D? x D2, onto
the boundary of My, x [0, 1]. The 4-manifold obtained by attaching D to M}, x [0, 1]
is a cobordism between M; and M. We notice that WU (M x [0,1])UD = WU D.
We aim to show that W U D is an (n)-solution for J. To see this, consider the effect
on homology and 7; of adding D to Mg x [0, 1].

Following the definition, we must first check that H;(Mj) is isomorphic to Hy (WU
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D) = Zm™ 1 induced by inclusion. Since W is an (n)-solution for L, Hi(M.) is
isomorphic to H;(W) = Z™ which is induced by inclusion. Adding a 2-handle to
W kills off a generator of H;(W) since we are attaching along an element of infinite
order. Thus H(W U D) = Z™1.

The manifold WUD is obtained (up to homotopy equivalence) by adding a 2-cell to
W along p. The meridian p has infinite order in Hy (W) and so Ho(WUD) = Hy(W).
Since W is an (n)-solution for L, an appropriate basis for Ho(W U D) is obtained.

Lastly, the inclusion map i : W < WUD gives i, (71 (W)™) C m(WUD)™. Since
no elements were added to the basis of Ho(W U D), it has the same basis as Ho(W).
Thus 71(L;) € 7 (W)™ C 7 (X UW)™ and similarly for m(D;), where {L;, D;} is
a basis for Hy(W). Thus W U D is an (n)-solution for J and J is (n)-solvable.

To obtain that any sublink is (n)-solvable, we continue this procedure to remove

all components not in the desired sublink. O

Remark 2.9. The converse of this proposition is not true. For example, each com-
ponent of the Hopf link is trivial and thus (0)-solvable, but Mpops tink = S3. Since

H1(S3) = 0, this link cannot be (0)-solvable.

Again, assume that L is a link in S® with m components, L, ..., L,,. Denote by
bi;(L) the band connect sum (or band sum) of L; and L;, where ¢ # j. In other words,

bi;(L) denotes the resulting link from connect summing the i** and j** components

of L.
Proposition 2.10. If L is an (n)-solvable link, then b;j(L) is (n)-solvable.

Proof. We will construct an (n)-solution for b;;(L). To do this, we form a cobordism
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(0] 0
q_D
s
0
L; Lj L; LJ
(a) v and a with (b) The zero surg-
L; and L; eries of v, L;, and
L;

Figure 2.5: Band summing two link components

between My and M, (1). First, consider the zero-framed surgery on L, denoted M.
Let a be a band connecting L; and L;. This band indicates where the band sum will
be performed (see Figure 2.5(a)).

Let W be the 4-manifold obtained by taking M}, x [0, 1] and adding a zero-framed
2-handle along 7, the curve indicated in Figure 2.5(a). Before we proceed, we need

the following lemma.

Lemma 2.11. 0W = M [ My, 1)

Proof. 1t is apparent that My, is part of the boundary. To see the other element of
the boundary, consider Figure 2.5(b) as a 4-manifold diagram. We perform a handle
slide by taking L; and sliding it along L; using the arc a. As a result of this handle
slide, we created a “helper circle” around L; and thus can unknot and separate L,
from L (see Figure 2.6). This creates, as a 3-manifold, the zero-framed surgery on the
Hopf link, which is homeomorphic to S3. As a 3-manifold, we are left with My, ;1)

Thus OW = ML H Mb;‘j(L)' O
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Figure 2.6: Performing a handle slide

We now continue with the proof of the proposition. Let X be an (n)-solution
for L. Then H;(Mj) is isomorphic to H,(X) = Z™, induced by the inclusion map.
Consider the manifold XUW. This manifold is obtained (up to homotopy equivalence)
by adding a 2-cell to X along 7. Since  has infinite order in H;(8X) = H;(X),
H(XUW) = Z™1! and i : M,y & X U W induces an isomorphism on H;.
Moreover, Ho(X) & Ho(X UW). By assumption, Ho(X) has a basis {L;, D;}!_; with
L; h D; = §;;. Since Hj is unchanged under this handle addition, Ha(X U W) has
the same basis.

Finally, note that the condition on m; is met by a completely analogous argument
to the one in Proposition 2.8. Thus X U W is an (n)-solution for b;;(L) and band

summing preserves (n)-solvability. O

Remark 2.12. The arguments in Propositions 2.8 and 2.10 can easily be generalized

to give analogous results for (n.5)-solvable links.



Chapter 3

Milnor’s p-Invariants

3.1 Definition

In this section, we recall the definition of Milnor’s fi-invariants. In the early 1950’s,
John Milnor defined a family of higher order linking numbers known as fi-invariants for
oriented, ordered links in S3 [Mil54], [Mil57]. These numbers are not link invariants
in the typical sense since there is some indetermincy due to the choice of meridians of
a link; however, as invariants of string links they are well defined [HL90]. In general,
Milnor’s invariants determine how deep the longitudes of each component lie in the
lower central series of the link group. While Milnor’s ji-invariants can be defined in
several ways, we will focus on the definition centered around the Magnus expansion.

Suppose L is an m-component link in S3. Let G = m,(S% — L) be the fundamental
group of the complement of L in S3. The lower central series of G, denoted G;
is recursively defined by G; := G and G; := [G;_1,G], where the latter group is

generated by elements of the form aba=1b~! for a € G;_; and b € G.

17
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Remark 3.1. The derived series and the lower central series of a group G are related
by G™ C Gon. Since [Gr,Gs] C Gyys, it is a straight forward computation to achieve

the relation.

Consider the nilpotent quotient group G/Gy. A presentation of this group, given

by Milnor [Mil57], can be written

G/Gr & (a1, g, - .., amloa, U], [z, L], - . - [@m, )], Fk) (3.1)
where a4, ..., a,, are a choice of m meridians for L, Fy is the k** term of the lower
central series of F = F{ay, ..., o), the free group on m generators and I; is the it

longitude of L written as a product of the ¢;’s.

With this presentation of G/Gy, the fi-invariants of a link L can be easily defined.
Let Z[[X1,...,Xm]] be the ring of power series in m noncommuting variables. The
Magnus expansion, or embedding, is a map E : ZF — Z[[X3,...,Xn]] defined by
sending o; — 1+ X;and o' = 1 = X; + X2 — X2 +--- for 1 < i < m. Let
I = i135...4k—19x be a string of integers amongst {1,...,m} with possible repeats.
The Magnus expansion of the longitude l;, written as an element of F' (modulo Gy)
has the form

E(l,k) =1+ E#L(il e ik—l)Xil - X

1"

Milnor’s invariant fi,(I) is defined as the residue class of ur (/) modulo the greatest
common divisor of up, (f ) where T is any string of integers obtained from I by deleting

at least one integer (excluding ix) and cyclically permuting the rest. It is useful to note
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that the first nonvanishing ji-invariant, fir,(L) will be ur(I) since it is well-defined.
For fi-invariants of length two, the calculation measures the linking between two

components, i.e. fir(i5) is the linking number between the it* and j™* components of

L. Tt is also worth noting, even though we will not use this fact, that if all of the

41,12, - .. ,%k_1, % are distinct, then [ is a link homotopy invariant [Mil54], [Mil57].

Example 3.2. Let BR = Borromean Rings, and o; be the meridian of L;, the it
component (see Figure 3.1), and I; the respective longitude. Let G = m;(S® — BR).

A presentation of G/Gy is given by
G/Gr = (au, a9, o3| [, 11], [0, ], [a3, I3], Fi)

where l; = [ag, 03], I = [03,a7"], and I3 = [0, 5!]. In this example, the longi-

tudes are independent of k.

\5

Figure 3.1: The Borromean Rings with meridians for each component
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Now consider the Magnus expansion of I3, E(I3).

E(l3) = E(cnastartas)
= E(a1)E(az ") E(er ") E(az)

=1— XXy + X5X; + higher order terms

The invariant ipr(123) will be the coefficient of X;X5. Since there are no lower
order terms besides 1, this is the first nonvanishing ji-invariant and figr(123) = —1
is well-defined. Also, fipr(213) = 1. Changing the orientation on a component will

change the invariant by a sign.

3.2 Properties of Milnor’s p-Invariants

An important property of ji-invariants is that they are concordance invariants [Cas75]
and thus make Milnor’s invariants a valuable invariant for us.

The following is a classical and well-known result of Milnor [Mil57].

Theorem 3.3 (Milnor). The longitudes of L lie in Gx—1 if and only if F/Fy, = G/Gy.

In other words, ir,(I) =0 for |I| < k—1 if and only iof F/F, = G/Gy.

The following corollary allows us to detect whether certain Milnor’s invariants are

zero using the fundamental group of My, the zero-framed surgery on L.

Corollary 3.4. F/Fy 1 = G/Gky1 if and only if F/Fy = J/Jy, where J = m(ML).
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Proof. The group G/G}, has presentation given by
G/Gry1 = (x1,- - - Tl [Tiy Ai]s Fr)

where )\; is the longitude of the i** component of L, L;, and x; is a meridian of L;.
Consider zero-framed surgery on L. The inclusion of S® — L into M, induces an epi-
morphism on fundamental groups that has kernel normally generated by Ai, ..., A\n.
The fundamental group J is obtained from G by setting the longitudes A; to zero.
This gives the presentation J/Jx = (z1,. .., ZTm|\i, Fkt1)-

Suppose that the map induced from inclusion from G/Gg41 to F/Fyy; is an iso-
morphism. Then [z;, \;] € Fki1, and thus \; € Fy since z; is a generator of F.
Taking this information and looking at the presentation of J/Ji it is apparent that
J/Jx & F/Fy.

Conversely, if J/Jx = F/F}, then ‘the relations show that \; € Fy and thus [z;, \;] €

Fit+1. This gives that G/Gyy1 = F/Fyq1.

Remark 3.5. If follows that fiy(I) = 0 for |I| < k if and only if F/Fy = J/Jy.

The following property of fi-invariants will be very useful in Chapter 5. The first
nonvanishing fi-invariants are additive. This was first established by Orr [Orr89], but
more geometric arguments can be found in [Coc90], [Ste90]. We will give a general

idea of the proof for your convenience.

Theorem 3.6 (Orr). Let Lo and Ly be in C™. If fiz (I) = 0 for all |I| < k and
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as in m(S® — I/:,-)/7r1(53 — L))k41 for i = 0,1. Looking at the Magnus expansion, we

have the following equality.

E(§i}) =1+ Sprg (i1 . .15, ) X, - X;

We can also consider the Magnus expansion of 12} as a product, E(19)E(1}).

EW) =EW)E)

= [1 + Zp’f,\o(al .. .Ott,j)Xal o 'Xat][]' + Eﬂi‘l(ﬂl . ',3u>j)Xﬂl o 'Xﬁu]

Combining the equalities gives the following

14+ Bpg(in - 46, 5) Xy - - Xiy =
1+ Eﬂﬂ)(al e 0, ) Xy o X ][L+ Eﬂﬂ(ﬂl e Bus ) Xy -+ 'Xﬁu]

Comparing the coefficients, we see that for s < 2k — 1,

prop (i s, 5) = pp(oa . 0, 3) + pp; (Br- - Bu, 5)-

Since ji-invariants of length k£ + 1 for m have no indeterminacy,

'L_l’L/oL\l(il .. .ik,j) = ﬁza(il .- -ik>j) +p’ﬂ(21 . ‘ik’j)'
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3.3 Relationship between i and (n)-Solvability

Before now, little has been known about the relationship between Milnor’s invariants
and (n)-solvability. The following theorem demonstrates a relationship between the

two concepts. Applications of this result will be seen in Chapter 5.

Theorem 3.7. If L is an (n)-solvable link with m components, then jir(I) = 0 for

1] < 272 — 1.

Proof. As mentioned in the previous section, a classical result of Milnor, given in
Theorem 3.3 states that jiz(/)=0 for all |I| < k (for any link L in S3) if and only if
F/Fy11 & G/Gyq1, where F = F(zy,--+ ,Tp) and G = m1(S%—L). Using Lemma 3.4,
this is equivalent to F'/ F} being isomorphic to J/J, where J = m(ML).

Suppose L is an (n)-solvable link with m components. By definition, there exists
an (n)-solution, W, for L. Consider the following sequence of maps on 7; induced by

inclusion (We are viewing F' as the fundamental group of a wedge of m circles)

F-2%y,¢ 2,7 -2 E=mW).

The map ¢, is the surjection induced by the inclusion of S® — L into My and has
kernel normally generated by the longitudes. The quotients of all of these groups by

the k** terms of their lower central series gives another sequence of maps

FIF, -2 G/Gy —2 J/J —2 E/E,.
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Consider the following diagram

GLJ

| J»

G/Gk L) J/Jk

where [ and p are the canonical quotient maps. If [j] € J/Jk, then, since ¢, is
a surjection, there exists g € G such that ¢2(g) = j. Now I(g) = [g] and thus

#2([9]) = [j]. In turn, this gives that ¢, : G/Gx — J/Ji is a surjection for all values
of k.

To proceed, it is useful to know how to translate group theoretic results into results
about topological spaces. If X is a connected complex then H;(X;Z) = H;(m(X); Z)
and Hy(m1(X);Z) is a quotient of Hy(X;Z). In fact, the Hurewicz map induces an

exact sequence

(X)) = Hy(X) — Ha(m (X)) — 1. (3.2)

Dwyer’s Theorem [Dwy75] is of particular importance and is stated below.

Theorem 3.8 (Dwyer’s Integral Theorem). Let ¢ : A — B be a homomorphism that
induces an isomorphism on H,(—;Z). Then for any positive integer k, the following

are equivalent:
i. ¢ induces an isomorphism A/Ax+1 = B/Biia
4. ¢ induces an epimorphism Hy(A;Z)/®r(A) = Ho(B;Z)/®k(B).

where @y (A) = ker(Hz(A) — Hy(A/Ag)) for k > 1.
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Consider the map induced by ¢3 o ¢, o ¢,

Hy(F;Z)/®x(F) — Hy(E; Z)/®x(E) (3.3)

where £ = m(W). Thus showing (3.3) is a surjection is equivalent to showing
¢:=d30¢py0¢;: F/Fry1 — E/Ey,1 being an isomorphism.

Since F' is the free group on m generators, Ho(F;Z) = 0. The map of (3.3) is a
surjection precisely when ®4(E) = Ho(F,Z). We need to determine for which k& we
have & (E) = H2(E, Z).

Since W is an (n)-solution for L, there is a basis of Hy(W) consists of pairs of
surfaces, {L;, D;};_; such that L; h D; = ¢, ;. By the exact sequence 3.2, Hy(W) —
H,(F) is a surjection and is induced by the inclusion map. Thus H,(E) is generated
by the images of the L; and D;.

A reformulation of ®(F) given by Cochran and Harvey [CHO8] is of use and will
be stated here. For any space X, ®x(X) is the subgroup of Hy(X) consisting of those
elements that can be represented by an oriented surface f : ¥ — X such that for
some symplectic basis of curves {a;, b;]1 < 7 < genus(X)} of 2, fu([ai]) C m1(X)k-
In other words, one half of a symplectic basis of curves map into 7;(X)x. Note that
®,(F) is the same as ®,(K(FE,1)) in the sense of this reformulation. Recall that a
space X is K(G,n) if m,(X) & G and m(X) = 0 for ¢ # n.

We consider ®,(F) in terms of this reformulation. We know that Hy(F) is gen-
erated by the images of L; and D;. A symplectic basis for each of these surfaces lie

in m (W)™ since m1(L;), m(D;) € m(W)™. We recall that the derived series and
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lower central series are related by G™ C Gyn. Thus, every element of Hy(E) can be
represented by oriented surfaces with basis curves in Eon. Hence ®4(E) = Ho(E) for
k<2m

Using Dwyer’s Theorem 3.8, we have that ¢3 o ¢ o ¢; induces an epimorphism
Hy(F)/®(F) — H2(E)/®k(E)
for £ < 2" and in turn gives an isomorphism
F/Fyy1 — E/Ex,

for £k < 2™,

Thus ¢ := ¢s 0 ¢y : F/Fonyy — J/Jany1 is a monomorphism. Since b is a map
F/F, — F/{(relations, F}), by Milnor’s presentation (3.1), ¢ is a surjection and thus
an isomorphism.

By Lemmas 3.3 and 3.4, the ji-invariants of length less than or equal to 2" + 1
vanish for (n)-solvable links.

We can better this result. By considering the following diagram.

Hy(Wy) —2 Hy(W)

! !

Hy(Ey) —=— Hy(E) —— Hy(E/Ea_,)

where W;, is the covering space of W that corresponds with the k% term of the
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lower central series of 7;(W). The vertical maps are surjections obtained from the
exact sequence induced by the Hurewicz map. The maps p,, i, and 7, are the maps
induced by the covering map p, inclusion and projection respectively.

The images of the basis {L;, D;} of Hy(W) will generate Ha(E) since Hy(W) —
Hy(FE) is a surjection. We claim that the map i, is a surjection. This can be seen
by viewing Hy(F}) as the second homology group for the covering space, K (Ej,1) of
the Eilenberg-Maclane space K(F,1). Note that K(Fkg, 1) is the covering space of
K(E, 1) corresponding to the subgroup Ex of E. When k& = 2" the images of {L;, D;}
in Ho(E) will lift to Ha(Ey) so iy : Ha(Ey) — H2(E) is surjective.

Cochran and Harvey [CH10] showed that the composition of the following maps

Hy(Ep) —2— Hy(E) —— Hy(E/Fak-1)

is the zero map for all k. Since i, is surjective, this implies that , is the zero map.
Hence ®9;_1(E) = Hy(E) and Dwyer’s theorem gives an isomorphism F/Fy, = E/Eo
and thus an isomorphism F/Fy = J/Jo, when k = 2™ using a similar argument as
above. Therefore the fi-invariants of length less than or equal to 2"*! vanish.

This result can be improved slightly. Let g : J/Jon+1 — F/Font+1 be a specified

isomorphism. Let f be the composite of the following maps

J UL —> J/J2n+1 '—’g F/F2n+l
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where 7; is the canonical quotient map. Consider the following diagram of maps

-1
E/Epn ~—o— J/Jpt1 ~%— F/Fpun

-

E J

where ¢ is the isomorphism between J/Jon+1 and E/FEan+1 established earlier in the

proof and 7 is the canonical quotient map. Thus we have an extension of f, namely

f=go¢tonmg: E — F/Fy+. This gives the following commutative diagram.

w1 (Mp) AN F/Fynn

|7

7I'1(W)

The commutative diagram below on homology is achieved by the induced maps ob-

tained from the above maps.

Hy(Mp) —L v Hy(F/Fyni1)

%

H3(W)

The images of H3(Mp) in H3(W') will be zero since OW = M|, and since the diagram
commutes, the image of H3(My) in H3(F/Fyn+1) will be zero. In other words, [M] —

0 € H3(F/Fjn+1). Consider the following sequence of maps

H3(F/F2k_1) — H3(F/F2k_2) — e = H3(F/Fk+2) — H3(F/Fk+1) — Hg(F/Fk)
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where h; : H3(F/Fy4;) — H3(F/Fkti—1) and k = 2"*!. The image of the fundamental
class under the map H3(Mp) — H3(F/F,) will be denoted by 0,,(Mg, f).

We will use the following two results of Cochran, Gerges and Orr [CGOO01]. They
will be stated without proof. It is worth noting that these results rely heavily on deep

work of Igusa and Orr [I001].

Lemma 3.9 (Cochran-Gerges-Orr). 6,,(My, f) € Image(r, : H3(F/Fmt1) — H3(F/Fy))
if and only if there is some isomorphism f : J/JIms1 = F/F,y1 extending f such

that T (Oms1(Myz, f)) = 0m(My, £).

Corollary 3.10 (Cochran-Gerges-Orr). The map H3(F/Fom—1) — H3(F/F,,) is the
zero map. Any element in the kernel of H3(F/Fpy;) = Hs(F/Fp), 3 < m—1, lies

in the image of H3(F/Fam_1) = H3(F/Fpy ).

Since Oan+1(M, f) =[0] and [0] is always in the image of a homomorphism, there
is an extension of f to an isomorphism f : J/Jg+1 = F/Fyi1 with hy (01 (My, f)) =

0x(Mp, f) = 0 by Lemma 3.9. This means that 61(My, f) is in the kernel of h;. So
0k+1(ML,f) lies in the image of H3(F/Fy—1) — H3(F/Fy4+1) by Corollary 3.10. In
other words, it lies in the image of the map hy o h3 o --- 0 hy_; and in turn lies in
the image of hy. By Lemma 3.9, there is an extension of f that is an isomorphism
between J/Jyyo and F/Fi,s. By continuing this process, an isomorphism between
J/Jok—1 and F/Fy,_; with k = 2"*! is obtained. Thus we have that the fi-invariants

of lengths less than or equal to 272 —1 of our (n)-solvable link vanish. This concludes

the proof of Theorem 3.7. O

Example 3.11. Consider the Borromean Rings = BR. In Example 3.1 it was shown
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genetic infection. This construction is as follows. Let M = S® — N(L) where L is an

m-component link in $® and 7 is a curve in S® — N(L). Let K be a knot in S®. Then

M(n,K) == (M — N(n)) Uy (S° — N(K))

where f : 9(S° — N(K)) — (M — N(n)) is defined by f,(ux) = I;" and f,(Ix) = pn-
Note that g is the meridian of 9(N(K)) and Ik is the longitude of (N (K)) and
similar definitions for p, and I,.

The manifold M(n, K) is homeomorphic to S* — N(L(n, K)) where L(n, K) is
another m-component link. We say L(n, K) is the result of infecting L along 7 by
K. Milnor’s ji-invariants are, however, unchanging under this construction. The

following lemma will be of use in the proof.

Lemma 4.1. If f : X =Y and f, : Hy(X) — Hy(Y) is surjective, then there is an

epimorphism induced by f. on Hy(m(X)) = Ha(m(Y)).

Proof. We will prove the special case when X = M(n, K) and Y = M. The general
case of this lemma, with arbitrary spaces X and Y can be proven in a similar manner.

Let A =m(M(n, K)) and B = m1(M) Consider the following diagram of maps.

M K(B,1)

‘
f ‘h

Mmn,K) — K(;l,l)

Notice that K(A,1) = M(n, K)U3 —cellsU4 —cellsU--- and K(B,1) = MU3—

cellsU4 —cellsU---. The map f can be extended to h to give a commutative diagram,
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where h|a(q,x) is precisely the map f, since m;(K (B, 1)) = 1 for n > 2. Taking the
diagram from above and applying the hom functor gives the following commutative

diagram.
Hy (M)

H,(K(B,1))
I b
Hn(M(n, K)) —— Hn(K(4,1))

Since only 3 dimensional and higher cells are being added to M to obtain K (B, 1)),
we have that the map H,(M) — H,(K(B,1)) is surjective for n = 1,2. Similarly,
H,(M(n,K)) - Hp,(K(A,1)) is surjective for n = 1,2. Since all other maps in the
diagram are surjective and the diagram commutes, h, is also surjective.

g

Proposition 4.2. Milnor’s p-invariants are unchanged by infection by a knot along

a curve.

Proof. For any knot K in S3, there exists a map h : $S3 — K — S3 — U where U
is the unknot and the map fixes the boundary. This map will induce an isomor-
phism on homology. This in turn gives a map h : M(n, K) — M that induces an
isomorphism on homology. We can see by Lemma 4.1, there is an epimorphism in-
duced by A, on Hy(m(M(n, K))) to Hy(m(M)). We can now apply Stallings’ Integral

Theorem [Sta65).

Theorem 4.3 (Stallings’ Integral Theorem). Let ¢ : A — B be a homomorphism
that induces an isomorphism on Hy(—;Z) and an epimorphism on Hy(—;Z). Then,

for each n, ¢ induces an isomorphism A/Ay = B/ By.
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i. isomorphisms Hi(My,,) = H1(X) and Hi(Mgp)) = H1(X);

it. isomorphism Hy(X) = Hy(ML,,) ® Ha(My).

Proof. Consider the following diagram of inclusion maps.

H
MLBD X [0, 1] ML X [0, 1]
X

Using Mayer Vietoris, the maps above induce the following long exact sequence (in
reduced homology), where I, = (414, %2«) and J, = j1.« — j2« (the homology groups are

with Z coefficients).
C 2y Hy(H) I Hy(My,,) ® Hy(My) —2 Hy(X) -2

H\(H) & Hy(Mp,,)® Hy(Mp) —=— H,(X) -2 0.

The homology group H;(H) = Z™ is generated by the meridians, y; of the trivial
string link. Recall that the n;’s were defined in the construction of Bing doubling.
Now 41.(p;) = 0 in S® — Lgp C My, since y; ~ 7; and 7; is in a commutator
subgroup. Also, is.(u;) is of infinite order in S® — L C M, since u; is identified with

a meridian of L. Hence I, is a monomorphism. Thus the map 9, : Ho(X) — H;(H)
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is the zero map. By the properties of a long exact sequence,
Hz(MLBD) © HQ(ML) = HZ(X)

For the other part of the lemma, consider the first isomorphism theorem. This

gives

N Hy(My,,) ® Hy (ML)
Hy(X) = image(L, : Hi(n x D?) — Hy(Mry,) ® Hi(Mr))

The image of I, is precisely Hy(Mp). Thus H;(X) = H;(Mp,,) = Z*™. Now
H,(Mgp(ry) is generated by the meridians of BD(L) which are isotopic (in X') to the
meridians of Lgp. This means that H;(X) = H;(Mgp(r)) which is the desired result.

O

We now continue with the proof of the proposition. Let S = B* — D be a slice
disk complement where ID C B* is a collection of disks with boundary Lpp. Let W
be an (n)-solution for L and let E be the space obtained by attaching W and S to
X along My and My, «{o} respectively. Thus E is a 4-manifold with boundary
Mpp(1)-

We claim that F is actually an (n + 1)-solution for BD(L). We start first by
showing E is an (n)-solution. Let E = X UW. Consider the following long exact

sequence (with Z-coeflicients in reduced homology) obtained by Mayer Vietoris.

C 2y Hy (M) B Hy(X) @ Hy(W) —25 HyE) -2

Hi(M) -2 H(X)e Hi(W) —2» H(E) -2 0.
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We have that inclusion induces an isomorphism H; (M) = H;(W). This together
with the fact that I on H; is surjective and H,(Mp) — H;(X) is the zero map, gives
that H,(E) & H;(X). From Lemma 4.12, the inclusion maps induce an isomorphism
Hy(X) = Hy(Mp,, ® Hy(Mp). Thus, by the first isomorphism theorem, we obtain

the following,.

Hy(X) & Hy(W)
ker(I : Hy(X) © Ho(W) — Ho(E))
~ Hy(X) ® Hy(W)
 image(l1 : Hy(ML) — Hy(X) ® Hy(W))

Hy(E) =

I

H2(MLBD) @D H2(W)

Notice that E = E U S. Consider the following long exact sequence on homology

given by Mayer Vietoris.

c 2 Hy(Myp,,) 2 Ho(E) ® Hy(S) —2— Hy(E) —2

Hi(My,,)) -2 H\(E)® Hy(S) —2» H\(E) -2 0.

Using the facts, H;(Mp,,) = H;(X) induced by inclusion (Lemma 4.12), Hy(S) =
0, and H,(X) & H,(E), we can again use the first isomorphism theorem to attain

the following.
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Hy(My,,) ® Hy(W)
image(py : Ho(ML,,) — Hy(E) ® Hy(S))

This shows that the second condition of (n)-solvability is satisfied for the 4-
manifold F. Using the same arguments found in Proposition 2.8, the third condition

is also met.

To check the first condition, consider again the long exact sequence ( 4.3). The

first isomorphism theorem tells us the following.

HI(MLBD)

ker(pr : Fx(Mrpp) — HL(B) @ Hy(3)) . oeelo)

Since the ker(p;) = {0}, we have that image(p;) = H1(Mr,,). Now, S is an
(n)-solution for My, thus H;(Mp,,) = H;(S) induced by inclusion. Using the first
isomorphism a final time gives that H,(E) & H(E).

By Lemma 4.12 and the above results, the first condition to being (n)-solvable is
met and E is an (n)-solution for BD(L).

We claim further that E is actually an (n + 1)-solution. Showing that (W) C
m1(E)® (or more precisely, i, (m (W)) C m1(E)®) is enough to imply that m; (W)™ c
™ ( E)(n+1)_

Consider the following commutative diagram of maps where i, is induced by in-
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clusion and both p;, and p,, are the canonical quotient maps.

7T1(W) - > 7T1(E)
pl*' \ \pz*
i) = ) B~ m(B)

mW)D W m(B)D

Showing that h = 0 is equivalent to showing that m (W) C m;(E)Y). Examining
this further shows that h = 0 if and only if i, : Hy(W) — Hy(F) is the zero map,

since our diagram commutes. Consider the following commutative diagram.

To show that 7, = 0 is equivalent to showing that the map p : Hy, (M) — H (E)
is the zero map. Consider [p;] € H1(My) where p; generate H;(Mp). Under the map
p, (W] = [m] € Hi(Mr,,) C Hi(E) (m; € S — Lpp C My,,). But recall that [r]
lie in a commutator subgroup and thus [7;] = 0 in homology, and p is the zero map.
Thus F is an (n + 1)-solution and the desired result is achieved.

The case when L is (n.5)-solvable is similar. O



Chapter 5

Applications to {F]*}

In studying the (n)-solvable filtration, we often look at successive quotients of the
filtration. Recently, progress has been made towards understanding the structure of
its quotients (see [Chal0], [CHO8], [CHL09], [Har08]). We will mostly focus on the
filtration of C™ when m > 2.

Most of the previous work studies the filtration of boundary links. Harvey first
showed that F*/Fr , is a nontrivial group that contains an infinitely generated
subgroup [Har08]. She showed that this subgroup is generated by boundary links
(links with components that bound disjoint Seifert surfaces). Boundary links have
vanishing p-invariants at all lengths. Cochran and Harvey improved this result by
showing that FI*/F™ contains an infinitely generated subgroup [CHO8]. Again, this
subgroup consists entirely of boundary links.

Using the relationship between Milnor’s fi-invariants and (n)-solvability, given in
Theorem 3.7, we are able to establish new results that are disjoint from previous

work. In addition, we will also investigate the commutivity of these quotient groups.
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Until now, nothing has been known about the “other half’” of the (n)-solvable

filtration, F%/F7 1.
Theorem 5.1. F%/F., contains an infinite cyclic subgroup for m > 3 x 2n+1,

Proof. Let BR = the Borromean Rings, as seen in Example 3.2. We have shown that
BR is a nontrivial link in F3, . /F3. When we take the Bing double of BR, BD(BR)
(see Figure 5.1(a)), this new link is in F§5 by Proposition 4.10. However, the first
nonvanishing fi-invariant is igp(sr)(I) = £1 for a certain I with |I| = 6 (see Chapter
8 in [Coc90] for more details), so BD(BR) is not (1)-solvable by Theorem 3.7. Then
BD(BR) is nontrivial in F¢5/F? since it has a nonvanishing fi-invariant.

We can perform the Bing doubling operation on this new link to form BD(BD(BR)),
or more simply, BDy(BR) (see Figure 5.1(b)). Using Proposition 4.11, we see
that BD,(BR) is nontrivial in Fj%. Looking at its fi-invariants, we will have that
BBp,Br)(I) = £1 for a certain I of length 12 and our link cannot be (2)-solvable by
Theorem 3.7. Therefore BDy(BR) is nontrivial in F;%/F12. We can continue this
process to have BD,;(BR) nontrivial in F%/F™ | for m > 3 % 2"+1.

We claim that BD,.1(BR) will have infinite order in F/%/F" .. Recall that
Orr showed the first nonvanishing p-invariant is additive, see Theorem 3.6. We will
look at an arbitrary string link L with the following properties instead of the specific
link BD,,41(BR) for the moment. Suppose that fi;(I) = 0 and that iz (J) # 0 for
|J| = |I| + 1. Then

iz (J) = bz (J) + Bz(J) = 285 (J).

If we were to take the closure of the stack of n copies of L, denoted TE, we would












Chapter 6

Grope Filtration

6.1 Grope Filtration

In addition to defining the (n)-solvable filtration, Cochran, Orr, and Teichner [COT03]

also defined the Grope filtration, {G™} of the (string) link concordance group,
{0} Cc---CcGr,CgrsCgGrC---CGys CGy CC™

The Grope filtration is more geometric than the (n)-solvable filtration. Gropes can

be thought of as geometric approximations of slicing disks.

Definition 6.1. A grope is a special pair (2-complex, base circle) which has a height
n e %N assigned to it. A grope of height 1 is precisely a compact, oriented surface X

with a single boundary component, which is the base circle (see Figure 6.1).

A grope of height n + 1 can be defined recursively by the following construction.
Let {a;, B : i =1,...,2(g — 1)} be a symplectic basis of curves for H;(X), where ¥ is
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filtration is a geometric approximation. It is a natural question to ask whether these
two filtrations are related. Before answering this question, we need to look at the rela-

tionship between a link bounding disjoint gropes and the link’s Milnor’s fi-invariants.

Definition 6.4. Let L =L UL,U---UL,, and L'’ = LY ULyU---UL;, be ordered,
oriented links in S%. We say that L is k-cobordant to L', where k € Z™, if there are
disjointly embedded compact, connected, oriented surfaces V1, Vs, ..., Vi, in S3x [0, 1]

with 0V; = 0pV; U 0,V; such that for all s = 1,...,m, we have
i Vin (8% x {0}) =8V;=L; and V;N(S® x {1}) = 8,V; = L;

ii. there is a tubular neighborhood V; x D? of V; in S® x [0, 1] which extends the
“longitudinal” ones of 8V; = L; U L in S® x {0} and S3 x {1} resp such that

the image of the homomorphism

71'1(‘/1') — 7'('1(‘/2' X 8D2) — 7'l'1(S3 X [0, 1] — V) =G

lies in the kth term of the lower central series of G.

A link that is k-cobordant to a slice link is called null k-cobordant.
Links that bound disjoint Gropes of height n will be k-cobordant to a slice link

for certain k£ dependent on n.
Proposition 6.5. If L € G, then it is 2"~ 1_cobordant to a slice link.

Proof. Suppose L € G ,. Then the components of L, say £;, bound disjoint Gropes

of height n in D* & §3 x [0, 1]. Moreover, the ¢;s extend to smooth embeddings of
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gropes with their untwisting framing. Also, L is Grope concordant to a slice link L'.
Let V; be the first stage Grope bounded by ¢; and ¢, (ie. the annular Grope in the
concordance). Let V = []~, Vi.

Now consider the homomorphism
71 (V;) = m(Vi x OD?) — m(S® x [0,1]-V)=G

that is induced by pushing V; off itself in the normal direction. Let {c;,3;} be a
sympletic basis for V; (see Figure 6.3). The parallel push-offs of Gropes can be taken
in $3 x [0,1] and thus are now in S* x [0,1] — V. We seek to find the images of the
basis elements under the above homomorphism. By the construction of the Gropes,

each of the a;s and ;s bound Gropes of height n — 1 in the exterior of V. Thus
[ai]7 [/Bz] € G(n—l) C G2n—1

by Lemma 6.2 and this concludes the proof. O

(S

> (6%)

Y4

1

Figure 6.3: The first stage grope, V; with symplectic basis {a;, Bi}i=1,2-

The following corollary of Lin [Lin91] can be applied to give a nice result.
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Corollary 6.6 (Lin). If L and L' are k-cobordant, then Milnor’s fi-invariants of L
and L' with lengths less than or equal to 2k are the same. In particular, if L is null

k-cobordant, then fir(I) =0 for |I| < 2k.

Corollary 6.7. A link L with components that bound disjoint Gropes of height n has

fir(I) =0 for |I| < 2™
Proof. The proof of this is immediate from the previous two results. O

Cochran, Orr and Teichner [COT03] showed that these two filtrations are related.

More specifically, that we have inclusion in one direction.

Theorem 6.8 (Cochran-Orr-Teichner). If a link L bounds a grope of height n+ 2 in

D*, then L is (n)-solvable, i.e. GTy C F™ for all m and n.

The natural question is whether or not the inclusion goes in the other direction.
In other words, if a link is (n)-solvable, do the components bound disjoint Gropes
of height n + 27 Recall from Theorem 3.7 that an (n)-solvable link has vanishing
fi-invariants for lengths less than or equal to 2"*2 — 1, while above we see that a
link in G7,, has vanishing fi-invariants for lengths less than or equal to 2"*2. This

difference of one gives motivation to try to find a nontrivial element in F*/G, ,.
Corollary 6.9. F'/G™. , is nontrivial for m > 2"+2. Moreover, Z C F'/G™, 5.

Proof. Let L be the Hopf link. By Proposition 4.7, BD(L) € Fy, where BD(L) is
the Bing double L (see Figure 4.5(d)). The invariant fr(12) = £1 depending on
orientation, as it is just the linking number between the two components. Again, by

work Cochran given in Chapter 8 of [Coc90], (Theorem ??), figp(r)(I) = %1 for some
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I of length 4. Using iterated Bing doubling we achieve BD,;(L) is nontrivial in F,
by Proposition 4.11, and figp,.,()(I) = £1 for some I of length 2"*2. BD, (L) is
(n)-solvable, but since some figp,,, () does not vanish for a length of 2"*2 it cannot
bound a Grope of height n + 2.

To show that there is an infinite cyclic subgroup contained within this quotient,

we look to the proof in Theorem 5.1 for a completely analogous argument. O

This tells us that the Grope filtration and (n)-solvable filtration of C™ are not the

same (for m > 2n+?),
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