book problems

§11.3 #4(b). Show there are infinitely may even abundant numbers. As per the hint, consider \(n = 2^k \cdot 3 \). \(\sigma(n) = (2^{k+1} - 1)4 \). We need to show that this is bigger than \(2^{k+1} + 2^k \cdot 3 \). This follows because \(2^{k+1} - 1 > 0 \) by our assumption that \(k > 1 \). Add \(3 \cdot 2^{k-1} \) to both sides. We get \(4 \cdot 2^{k-1} - 1 = 2^{k+1} - 1 > 3 \cdot 2^{k-1} \). Multiplying both sides by 4 we get \(\sigma(n) = (2^{k+1} - 1)4 > 3 \cdot 2^{k+1} \).

§11.4 #17(a). Note that \(F_n = 2^{2^n} + 1 \equiv 1 \) (mod 4) for all \(n \geq 2 \). Therefore, \((3/F_n) = (F_n/3) \). Now, \(2^{2^n} + 1 \equiv (-1)^{2^n} + 1 \equiv -1 \) (mod 3). Therefore \((3/F_n) = (-1/3) = -1 \). To compute \((5/F_n) \) note that \(2^{2^n} + 1 = 4^{2^n-1} + 1 \equiv (-1)^{2^n-1} + 1 \equiv 1 + 1 \equiv 2 \) (mod 5). Therefore, \((5/F_n) = (F_n/5) = (2/5) = -1 \). By problem 15, section 9.3, since \(F_n \) is of the form \(p = 2^{4n} + 1 \), we see that 7 is a primitive root of \(F_n \). Therefore, the order of 7 (mod \(F_n \)) is \(F_n - 1 \) and therefore \(7^{(F_n-1)/2} \equiv -1 \) (mod \(F_n \)). (Since \(7^{(F_n-1)/2} \) satisfies \(x^2 \equiv 1 \) (mod \(F_n \)) and \(7^{(F_n-1)/2} \) is not equivalent to 1 (mod \(F_n \)), we must have \(7^{(F_n-1)/2} \equiv -1 \) (mod \(F_n \)).

Non-book problems:

1. We proceed by induction. Case \(n = 0 \) comes down to showing \(3 = F_0 = F_1 - 2 \). But this is true since \(F_1 = 5 \). Assume by induction \(\prod_{i=0}^{k-1} = F_k - 2 \). We need to show that \(\prod_{i=0}^{k} F_i = F_{k+1} - 2 \). By the induction hypothesis this boils down to showing \((F_{k-1})F_k = F_{k+1} - 2 \) which follows quickly.

2. Let \(q \) be a prime dividing \(\prod_{i=0}^{n} F_i \). Claim: \(q \) does not divide \(F_{n+1} \). Proof of claim: If \(q \mid F_{n+1} \), then \(q \mid (F_{n+1} - F_0 F_1 \ldots F_n) \) and therefore \(q \mid 2 \) by part 1. This is a contradiction since all \(F_i \) are odd. Therefore \(q \nmid F_{n+1} \). Let \(T_n = \{ \text{primes dividing} \prod_{i=0}^{n} F_i \} \). Then each \(T_n \) is a proper subset of \(T_{n+1} \). In particular, as \(n \) goes to infinity, our list of primes is infinitely long.