book problems

9.3 #9. Let p and q be odd primes satisfying $p = q + 4a$ for some a. Show that $(a/p) = (a/q)$. This follows from the following sequence of equalities.

$$(a/p) = (- (p - 4a)/p) = (- q/p) = (-1)^{p-1/2} (q/p) = (-1)^{p-1/2 + q-1/2} (p/q)$$

$$= (-1)^{p-1/2 (1 + q-1/2)} (4a + q/q) = (-1)^{p-1/2 (1 + q-1/2)} (a/q).$$

Now, since $q \equiv p \pmod{4}$ the numbers $(p - 1)/2$ and $(q - 1)/2$ have the same parity. Thus one of $(p - 1)/2$ or $1 + (q - 1)/2$ are even and as a result $(-1)^{p-1/2 (1 + q-1/2)} = 1$. We are done.

Non-book problems: 1. Let r be a primitive root of p. r has order $p - 1 = 3k + 1$. Now, the order of r^3 is $\frac{3k + 1}{\gcd(3k + 1, 3)} = 3k + 1 = p - 1$. That is, r^3 also has order $p - 1$. Therefore, the least non-negative residues of $r^3, (r^3)^2, \ldots, (r^3)^{p-1}$ run through $1, 2, \ldots, p - 1$. That is, every least non-negative residue is a cubic residue.

2. Again, let r be a primitive root of p, having order $3k$. This time, the order of r^3 is $\frac{3k}{\gcd(3k, 3)} = k$. Therefore, the integers $r^3, (r^3)^2, \ldots, (r^3)^k$ are incongruent mod p and are cubic residues. These are one third of the (non-zero) residues. Now, if y is a cubic residue, then $y = x^3$ for some $x = r^j$ for some j. Then $y = (r^j)^3 = (r^3)^j$. Let $j' < k$ be congruent to j mod k, then $y \equiv (r^3)^{j'} \pmod{p}$ and hence is one of the elements already listed.