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Contact structures

Definition

A contact structure is a maximally nonintegrable hyperplane field.

ξ = ker(dz − ydx)

The kernel of a 1-form λ on Y 2n−1 is a contact structure whenever

λ ∧ (dλ)n−1 is a volume form ⇔ dλ|ξ is nondegenerate.
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Reeb vector fields

Definition

The Reeb vector field R on (Y , λ) is uniquely determined by

λ(R) = 1,

dλ(R, ·) = 0.

The Reeb flow, ϕt : Y → Y is defined by d
dtϕt(x) = R(ϕt(x)).

A closed Reeb orbit (modulo reparametrization) satisfies

γ : R/TZ→ Y , γ̇(t) = R(γ(t)), (0.1)

and is embedded whenever (0.1) is injective.
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Reeb orbits

Given an embedded Reeb orbit γ : R/TZ→ Y ,
the linearized flow along γ defines a symplectic linear map

dϕt : (ξ|γ(0), dλ)→ (ξ|γ(t), dλ)

dϕT is called the linearized return map.

If 1 is not an eigenvalue of dϕT then γ is nondegenerate.

λ is nondegenerate if all Reeb orbits associated to λ are
nondegenerate.

In dim 3, nondegenerate orbits are either elliptic or hyperbolic
according to whether dϕT has eigenvalues on S1 or real
eigenvalues.
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Reeb orbits on S3

S3 := {(u, v) ∈ C2 | |u|2 +|v |2 = 1}, λ = i
2 (udū−ūdu+vdv̄−v̄dv).

The orbits of the Reeb vector field form the Hopf fibration!

R = iu
∂

∂u
− i ū

∂

∂ū
+ iv

∂

∂v
− i v̄

∂

∂v̄
= (iu, iv).

The flow is ϕt(u, v) = (e itu, e itv).

Patrick Massot Niles Johnson, S3/S1 = S2
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A video of the Hopf fibration
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A new era of contact geometry

Helmut Hofer on the origins of the field:

So why did I come into symplectic and contact geom-
etry? So it turned out I had the flu and the only thing
to read was a copy of Rabinowitz’s paper where he proves
the existence of periodic orbits on star-shaped energy sur-
faces. It turned out to contain a fundamental new idea,
which was to study a different action functional for loops
in the phase space rather than for Lagrangians in the con-
figuration space. Which actually if we look back, led to the
variational approach in symplectic and contact topology,
which is reincarnated in infinite dimensions in Floer the-
ory and has appeared in every other subsequent approach.
...Ja, the flu turned out to be really good.
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Existence of periodic orbits

The Weinstein Conjecture (1978)

Let Y be a closed oriented odd-dimensional manifold with a
contact form λ. Then the associated Reeb vector field R admits a
closed orbit.

Weinstein (convex hypersurfaces)

Rabinowitz (star shaped hypersurfaces)

Star shaped is secretly contact!

Viterbo, Hofer, Floer, Zehnder (‘80’s fun)

Hofer (S3)

Taubes (dimension 3)

Tools > 1985: Floer Theory and Gromov’s pseudoholomorphic curves.
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The machinery that was invented

Let (Y 2n−1, ξ = ker λ) be a closed nondegenerate contact manifold.

Floerify Morse theory on

A : C∞(S1,Y ) → R,

γ 7→
ż

γ

λ.

Proposition

γ ∈ Crit(A)⇔ γ is a closed Reeb orbit.

Grading: |γ| = CZ (γ) + n − 3,

CEGH
∗ (Y , λ, J) = Q〈{closed Reeb orbits} \ {bad Reeb orbits}〉

3-D: Even covers of embedded negative hyperbolic orbits are bad.
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The letter J is for pseudoholomorphic

A λ-compatible almost complex structure is a J on T (R×Y ):

J is R-invariant

Jξ = ξ, positively with respect to dλ

J(∂s) = R, where s denotes the R coordinate

Gradient flow lines are a no go; instead count pseudoholomorphic
cylinders u ∈MJ(γ+, γ−)/R.

u : (R× S1, j)→ (R× Y , J)

∂̄Ju := du + J ◦ du ◦ j ≡ 0

lim
s→±∞

πR u(s, t) = ±∞

lim
s→±∞

πM u(s, t) = γ±

up to reparametrization.

Note: J is S1-INDEPENDENT
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Cylindrical contact homology

C∗(Y , λ, J) = Q〈{closed} \ {bad}〉

|γ| = CZ (γ) + n − 3

〈∂EGHα, β〉 =
ÿ

u∈MJ (α,β)/R,
|α|−|β|=1

m(α)

m(u)
ε(u)

〈∂
EGH

α, β〉 =
ÿ

u∈MJ (α,β)/R,
|α|−|β|=1

m(β)

m(u)
ε(u)

k:1−→

α = γkp+

β = γkq−

γp+

γq−

γ± embedded, gcd(p, q) = 1

Conjecture (Eliashberg-Givental-Hofer ’00)

If there are no contractible Reeb orbits with |γ| = −1, 0, 1 then (C∗, ∂) is
a chain complex and CHEGH

∗ (Y , ker λ;Q) = H(C∗(Y , λ, J), ∂) is an
invariant of ξ = ker λ.
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Progress...

Definition

(Y 2n+1, λ) is hypertight if there are no contractible Reeb orbits.

(Y 3, λ) is dynamically convex whenever

c1(ξ)|π2(Y ) = 0 and every contractible γ satisfies CZ (γ) ≥ 3.

For us {hypertight} ⊂ {dynamically convex}.

A convex hypersurface transverse to the radial vector field Y in (R4, ω0)
admits a dynamically convex contact form λ0 := ω0(Y , ·).

Theorem (Hutchings-N. ‘14 (JSG 2016))

If (Y 3, λ) is dynamically convex, J generic, and every contractible Reeb
orbit γ has CZ (γ) = 3 only if γ is embedded then ∂2 = 0.

Intersection theory is key to our proof that ∂2 = 0.

Can allow contractible CZ(γ) = 3 for prime covers of embedded Reeb orbits

(Cristofaro-Gardiner - Hutchings - Zhang)

3D hypertight: invariance via obg for chain homotopy (Bao - Honda ’14)

Any dim hypertight: ∂2 = 0 and invariance via Kuranishi atlases (Pardon ’15)
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The pseudoholomorphic menace

Transversality for multiply covered curves is hard.

Is MJ(γ+; γ−) more than a set?

MJ(γ+; γ−) can have nonpositive virtual dimension...

Compactness issues are “severe”.

1

ind= 2

1

Desired compactification
when CZ (x)− CZ (z) = 2.

−3

2 0

2 2

−1

0

Adding to 2 becomes hard
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The return of regularity (domain dependent J)

S1-independent J cylinders in R× Y 3 are reasonable

All hope is lost in cobordisms, and no obvious chain maps.

Invariance of CHEGH
∗ (Y , λ, J) requires S1-dependent J := {Jt}t∈S1 .

But breaking S1-symmetry invalidates
(
∂EGH

)2
= 0.

We define a Morse-Bott non-equivariant chain complex

NCC∗ :=
à

all Reeb orbits γ

Z〈qγ, pγ〉, ∂NCH :=

 q∂ ∂+

∂− + obg p∂


If sufficient regularity exists to use J, then between good orbits,

q∂ = ∂EGH , p∂ = −∂

EGH

, ∂+ = 0

Compactness issues require obstruction bundle gluing, producing a
novel correction term.

The nonequivariant theory NCH∗ is a contact invariant, which we
relate to CHEGH

∗ via family Floer methods.
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Enter the point constraints

αpα

← u(R×{0})

βpβ

Given a generic λ-compatible family J := {Jt}t∈S1 ,

e± : MJ(γ+, γ−) → im(γ±) = γ±

u 7→ lim
s→±∞

πY u(s, 0)

Can use to specify a generic base point pγ on each
embedded γ: e+(u) = pα, e−(u) = pβ .

The base level cascade Morse-Bott moduli spaces, MJ(·, ·)1:

MJ
(

pα, qβ
)

1
:= MJ(α, β)

MJ
(

qα, qβ
)

1
:=

{
u ∈MJ(α, β) | e+(u) = pα

}
MJ

(
pα, pβ

)
1

:=
{
u ∈MJ(α, β) | e−(u) = pβ

}
MJ

(
qα, pβ

)
1

:=
{
u ∈MJ(α, β) | e+(u) = pα, e−(u) = pβ

}
Higher levels consist of certain tuples (u1, .., u`) of broken cylinders.

As a set, each of these spaces is a disjoint union of subsets MJ(·, ·)`.
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Enter the cascade moduli spaces

Definition

MJ
3(qα,pβ)

Assuming α = γ0, γ1, ... , γ`−1, γ` = β are all distinct, the

higher levels MJ
|α|−|β|

(
rα, rβ

)
`
, are the set of tuples

(u1, .., u`) ∈
ź̀

i=1

MJ(γi−1, γi ) such that

if rα = qα then e+(u0) = pα;

if rβ = pβ then e−(u`) = pβ ;

e−(ui−1), e+(ui ), pγi , are cyclically ordered wrt Reeb
flow.

When α = β, define MJ (qα; qα) =MJ (qα; pα) =MJ (pα; pα) = ∅,

MJ (pα; qα) :=

 −2{pt} if α is bad;

∅ if α is good.


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A new hope for a chain complex

NCC∗ :=
à

all Reeb orbits γ

Z〈qγ, pγ〉, ∂NCH :=

(
q∂ ∂+

∂− + obg p∂

)

q∂ : }CC∗ →}CC∗−1 ∂+ : yCC∗ →}CC∗

qα 7→
ÿ

qβ, |α|−|β|=1

u∈MJ( qα, qβ)

ε(u) qβ pα 7→
ÿ

qβ, |α|−|β|=0

u∈MJ( pα, qβ)

ε(u) qβ

∂− : }CC∗ →yCC∗−2
p∂ : yCC∗ →yCC∗−1

qα 7→
ÿ

pβ, |α|−|β|=2

u∈MJ( qα, pβ)

ε(u) pβ pα 7→
ÿ

pβ, |α|−|β|=1

u∈MJ( pα, pβ)

ε(u) pβ

Theorem (Hutchings-N ’19 (obg details in progress))

If (Y 2n−1, λ) is hypertight or (Y 3, λ) is dynamically convex,

then for a generic family J, ∂NCH is well-defined,
(
∂NCH

)2
= 0, and

NCH∗(Y , ker λ) is independent of the choice of λ and J.
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Rise of the obstruction bundles (∂−+obg)q∂+p∂(∂−+obg)=0

Given ΣR → R× S1 we can form a preglued curve. Next try to perturb
to an honest pseudoholomorphic curve.

C

Σ
x

P

• Near x of Σ only perturb in directions normal to R× γ
• Obtain a unique curve iff the gluing obstruction s(Σ) = 0, where s
is a section of the obstruction bundle O →MR .
• Count of gluings is related to count of 0’s of obstruction section s.
• Fiber = coker(DΣ)∗, Rank = dimMR .
• [HT ]: branch points varied but objects being glued are fixed.
• [HN]: x is fixed but the glued object P varies in its moduli space.

Theorem (Hutchings-N, in progress)

Let (Y 3, λ) be dynamically convex and J generic. If γ is an embedded
elliptic contractible Reeb orbit then

〈(obg)|γd , zγd−1〉 = n(γ),

given by the leading coefficient of the asymptotic op associated to P:

n(γ) = deg
(
MJ(index 2 planes asymptotic to γ)/R→ S1

)
,
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Revenge of the obstruction bundles

Essentialness of obg for the ellipsoid E(a,b)=

{
(u,v)∈C2

∣∣ |u|2
a

+ |v|
2

b
=1

}

Let α and β be orbits for the ellipsoid with |α| − |β| = 2.

The differential coefficient from α̂→ qβ has to be ±1 or else the
homology comes out wrong.

The obg arises when α = γk+1, β = γk with γ the short orbit.

HWZ: the holomorphic planes bounded by γ give a foliation of E (a, b).

It follows directly from this that the obstruction bundle term is ±1,
assuming you know what you are doing (stay tuned).

An intersection theory argument shows there are no non-obg
contributions to the differential coefficient from α̂ to qβ.

Jo Nelson (Rice) Reflections on cylindrical contact homology



Obstruction bundle gluing setup

C

Σ
x

P

γ is embedded, C and P are immersed
Σ is a branched cover of γ × R
Fix R-coor of x (akin to gluing parameter)
dim (CokerDΣ)) = 2

Fix point constraint at bottom of Σ
Fix translation of C (another gluing parameter)

After fixing the R-coor of C ,Σ,P we have three degrees of freedom:

1 S1-coordinate of the branch point x.

2 Choice of P, a point in the moduli space of planes.

We have three constraints:

1 Conformal constraint corresponding to the point constraint.

2 The gluing obstruction.

∃ ! choice of S1-coor agreeing with the conformal constraint.

Next, the gluing obstruction...
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The gluing obstruction

C

Σ
x

P

− Given nonzero ψ ∈ coker(DΣ)=ker(D∗
Σ ), consider its asymptotic

eigenfunctions {ψi}. ψ is a 1-D C-vector space and hence a section.
− Let ψd , ψ1 be in the leading eigenspace of the asymoptotic
operators Lγd , Lγ . (espace for Lγ pulls back to espace for Lγd ).
− Take ψC , ψP to be the associated asymptotic eigenfunctions for
Cylinder and Plane.
− If J is generic then ψd , ψ1, ψC , ψP are all nonvanishing.

The gluing obstruction comes from a count of zeros.

Many pages of math permit use of the following approximation
given by the coefficients of the leading order term

s(Σ) ≈ 〈ψd , ψC 〉+ 〈ψ1, ψP〉,
Everything is fixed except for ψP as P can move in its moduli space.

Since we fixed x for Σ, the number of ways to glue is given by the
choices of P such that 〈ψ1, ψP〉 = −〈ψd , ψC 〉
It suffices to find the zeros of the linearized section, given by the
coefficients of the leading order terms: s0(Σ) = aCψC + aPψP

∃ unique aP ∈ C \ {0} because ψ is a 1-D C-vector space ∼= C.

Translation in R corresponds to multiplication by es
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Advertisement: Fall 2020 Attraction a jo-holomorphic production

OBSTRUCTION BUNDLE ZOOMING

“It’s the best paper you’ve never read!” –Ko Honda, 2020

Brought to you by:

Jo Nelson (Rice) and Jacob Rooney (UCLA → Simons Center)

With contributions by

Dan Cristofaro-Gardiner (Santa Cruz
IAS−→ Maryland) *tbc

Chris Gerig (Harvard)

Ko Honda (UCLA) *tbc

Michael Hutchings (UC Berkeley)

Join us weekly in September, someday after 10am PDT for the fun!
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Family Floer (cf. Bourgeois-Oancea IMRN ’17)

CCS1

∗ (Y , λ) = NCC∗⊗Z[U], deg(U) = 2, ∂S
1

= ∂NCH⊗1+...+∂k⊗U−k+...

Let J be an S1-equivariant S1 × ES1 family.

Fix a perfect Morse f on BS1 = S∞.

Given γ± and x± ∈ Crit(f ) , consider pairs (η, u) of grad flow

η : R→ ES1 = CP∞ asymptotic to points in π−1(x±) and

u : R× S1 → R× Y , ∂su + Jt,η(s)u = 0, asymptotic to γ±.

Let MJ((x+, γ+), (x−, γ−)) be the quotient of this solution set.

Have evaluation maps and can run Axiomatic S1 Morse-Bott
framework (HN ’17).

Theorem (Hutchings-N ’19 (obg details in progress))

If (Y 2n−1, λ) is hypertight or (Y 3, λ) is dynamically convex, then for a

generic family J, (CCS1

∗ (Y , λ, J), ∂S
1

) is a chain complex and

CHS1

∗ (Y , ker λ) is independent of the choice of λ and J.
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Autonomous simplification (Hutchings-N ’19)

Suppose J is λ-compatible on R× Y which satisfies the necessary

transversality conditions to define ∂EGH and show
(
∂EGH

)2
= 0.

Then we can use the “autonomous” family J = {J}:

∂S
1

= ∂NCH ⊗ 1 + ∂1 ⊗ U−1,

where the “BV operator” ∂1 is given by

∂1 pα = 0, ∂1 qα =

{
d(α)pα, α good,

0, α bad.

If α and β are good Reeb orbits, then〈
∂NCH qα, qβ

〉
=
〈
∂EGHα, β

〉
,
〈
∂NCH pα, pβ

〉
=
〈
−∂

EGH

α, β
〉
.

If α is a bad Reeb orbit, then
〈
∂NCH qα, qβ

〉
= 0 for any Reeb orbit β;

If β is a bad Reeb orbit, then
〈
∂NCH pα, pβ

〉
= 0 for any Reeb orbit α.〈

∂NCH pα, qβ
〉

= 0, except when α = β is bad, yielding a coefficient of -2.
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Full circle

CCS1

∗ (Y , λ, J) =
à

α,k≥0

Z〈qα⊗ Uk , pα⊗ Uk〉, ∂S
1

= ∂NCH ⊗ 1 + ∂1 ⊗ U−1

Theorem (Hutchings-N. ’19)

When there exists a regular pair (λ, J), meaning ∂EGH is well-defined and(
∂EGH

)2
= 0, e.g. dim(Y ) = 3, λ dynamically convex, J generic, then

H∗
(
CC S1

∗ (Y , λ, J), ∂S1
)
⊗Q = CHEGH

∗ (Y , λ, J).

1 Let C ′∗ be the submodule missing generators of the form qβ ⊗ 1

where β is good. Then C ′∗ is a subcomplex of CCS1

∗ (Y , λ).

2 H∗
(
C ′ ⊗Q, ∂S1 ⊗ 1

)
= 0.

3 CHS1

∗ (Y , ξ)⊗Q = H∗
((

CCS1

∗ (Y , λ)/C ′∗

)
⊗Q, ∂S1 ⊗ 1

)
.

A basis for this quotient complex is given by qα⊗ 1, for α good. The
differential is induced by q∂ & after tensoring w/Q agrees with ∂EGH .

Corollary (Hutchings-N ’19 (modulo obg))

CHEGH
∗ (Y 3, kerλ) does not depend on J or dynamically convex λ!
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The period doubling bifurcation

Bifurcations of Reeb orbits occur as we deform λ.

Let {Φτ}τ∈[0,1] : D → D, be a partial return map

Φτ =
(−1 0

0 −1

)
◦ ϕXτ

ε ,

ϕXτ
ε is the ε-flow of a 180◦-rotation invariant Xτ .

Disc D

elliptic orbit
E

X0
X1

elliptic E  negative hyperbolic h1

rotation(E) ∼ 1
2
− ε new elliptic orbit e2

period(h1) ∼ period(E ), rotation(h1) ∼ rotation(E )

period(e2) ∼ 2 · period(E ), rotation(e2) ∼ 2 · rotation(E )
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Bifurcated E has become

Φτ =
(−1 0

0 −1

)
◦ ϕXτ

ε .

X0
X1

(r = 0) the critical point of X0 is a fixed point of Φ0,
corresponding to the elliptic orbit E ,

(r = 1) the central critical point of X1 is a fixed point of Φ1,
corresponding to the negative hyperbolic orbit h1.

(r = 1) the left and right critical points of X1 are exchanged by Φ1,
giving rise to a period 2 orbit, aka the elliptic orbit e2.
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Compute you will

1 Fix an embedded Reeb orbit γ.

2 Locate other orbits winding k times around tubular nhood Nγ of γ.

3 Compute cylindrical contact homology in this tube.

Local CHEGH
∗ = H∗(Q〈good orbits winding k times around Nγ〉, ∂|Nγ ).

(k = 2): E 2 is a generator before the bifurcation
e2 is a generator after.

Even though h2
1 winds twice around Nγ , it is a bad orbit,

and banished to the Sarlacc pits.

Local CHEGH
∗ (λ0,Nγ , 2) =

 Q if ∗ = 0 (generated by E ),

0 otherwise.

Local CHS1

∗ sees more, rescuing the bad orbits!
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Always two there are, the elliptic master and the hyperbolic apprentice

Local CHS1

∗ = H∗(Z〈qγ, pγ | γ winds k times around Nγ〉 ⊗ Z[U], ∂S
1 |Nγ )

For λ0, there is only one orbit in Nγ which winds twice around: E 2

CHS1

∗ (λ0,Nγ) =


Z if ∗ = 0 (generated by qE ),

Z/2 if ∗ = 2k + 1 (generated by uk Ê ),

0 otherwise.

For λ1, there are two orbits in Nγ which wind twice around: e2 and h2

CHS1

∗ (λ1,Nγ) =


Z if ∗ = 0 (generated by qe2),

Z/2 if ∗ = 2k + 1 (generated by ukqh2),

0 otherwise.

The 2-torsion before the bifurcation sees the bad Reeb orbit that can be
created in the bifurcation!
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Thanks!
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