Symplectic Embeddings on the Virtual BeECH

Leo Digiosia, Jo Nelson, Hao Ning, Morgan Weiler, Yirong Yang

Rice University

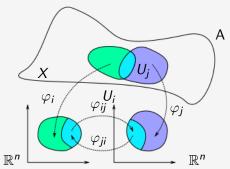
Undergraduate Colloquium & Topology Seminar

October 26, 2020

Digiosia, Nelson, Ning, Weiler, & Yang Symplectic Embeddings on the Virtual BeECH

Definition

A **smooth** *n*-manifold X is a topological space that looks locally like \mathbb{R}^n and admits a global differentiable structure.



A smooth atlas on X has

- Charts (U_i, φ_i) for which the U_i cover X.
- The φ_i: U_i → ℝⁿ are diffeomorphisms onto an open subset of ℝⁿ.

The **transition maps** are given by $\varphi_{ij} = \varphi_j \circ \varphi_i^{-1}|_{\varphi_i(U_i \cap U_j)} \colon \varphi_i(U_i \cap U_j) \to \varphi_j(U_i \cap U_j).$

Symplectic Embeddings on the Virtual BeECH

Klein Bottles!

Prof. Jo

We need 4 dimensions in order to be embedded!

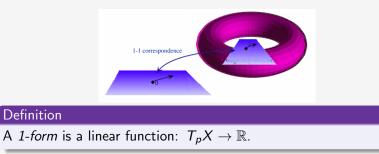
Digiosia, Nelson, Ning, Weiler, & Yang

Symplectic Embeddings on the Virtual BeECH

Definition

The *tangent space* of X^n , denoted T_pX , is a vector space "at" a point p of the manifold diffeomorphic to \mathbb{R}^n .

Prof Io



Directional derivatives $D_v f(p) = \nabla f(p) \cdot \frac{v}{|v|}$ and *fds* from $\oint_C fds$.

Differential forms are a coordinate independent approach to calculus. Great for defining integrals over curves, surfaces, and manifolds!

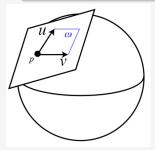
Linear approximation of an owl

Digiosia, Nelson, Ning, Weiler, & Yang

Symplectic Embeddings on the Virtual BeECH

Definition

A 2-form ω on a manifold X is a smooth choice of anti-symmetric bilinear functions $\omega_p : T_pX \times T_pX \to \mathbb{R}$ for each $p \in X$.



At the infinitesimal level, ω measures oriented area spanned by vectors u and v at a point p.

Definition

A symplectic manifold is a pair (X^{2n}, ω) such that ω is a smooth 2-form satisfying

- Closedness: $d\omega = 0$
- Nondegeneracy: ωⁿ is nonvanishing,
 i.e. a volume form.

Examples

- $dx \wedge dy$ on \mathbb{R}^2
- $\sum_{i=1}^{n} dx_i \wedge dy_i$ on \mathbb{R}^{2n}

Given
$$\mathbb{C}^n$$
 with $\omega_0 = rac{\sqrt{-1}}{2} \sum_{j=1}^n dz_j \wedge d\overline{z}_j$,

consider the symplectic manifolds with boundary

• Ball:
$$B^{2n}(r) := \{ z \in \mathbb{C}^n \mid \pi | z_1^2 | + ... + \pi | z_n^2 | \le r \}$$

• Cylinder:
$$Z^{2n}(R) := B^2(R) imes \mathbb{C}^{n-1}$$

• Ellipsoid:
$$E(a,b) := \left\{ z \in \mathbb{C}^2 \ \left| \ \frac{\pi |z_1^2|}{a} + \frac{\pi |z_2^2|}{b} \le 1 \right\} \right\}$$

• Polydisc:
$$P(a,b):=\{z\in\mathbb{C}^2\mid\pi|z_1^2|\leq a,\ \pi|z_2^2|\leq b\}$$

A diffeomorphism is a smooth bijective map with smooth inverse.

Definition

Two symplectic manifolds (X, ω) and (X', ω') are **symplectomorphic** if there exists a diffeomorphism $f : (X, \omega) \to (X', \omega')$ s.t. $f^*\omega' = \omega$.

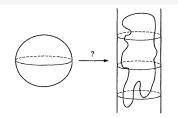
Here $f^*\omega'(\cdot, \cdot) = \omega'(df \cdot, df \cdot)$

Definition

A manifold (X, ω) is said to **symplectically embed** into (X', ω') if there exists an injective smooth map $f : X \stackrel{s}{\hookrightarrow} X'$ s.t. f is a symplectomorphism onto its image.

Symplectomorphisms are volume-preserving. Are all volume preserving maps are symplectomorphisms?

Are symplectic embeddings restricted by more than volume?



Theorem (Gromov Nonsqueezing, 1985)

 $B^{2n}(r)$ symplectically embeds into $Z^{2n}(R) = B^2(R) \times \mathbb{R}^{2n-2}$ if and only if $r \leq R$

Digiosia, Nelson, Ning, Weiler, & Yang Symplectic Embeddings on the Virtual BeECH

Definition

The **Gromov width** of (X, ω) of dimension 2n is the supremum over real numbers r such that $B^{2n}(r)$ embeds symplectically into X.

Symplectic capacity \sim obstructions of symplectic embeddings: If $c(X, \omega_1) > c(X', \omega')$ then $\nexists (X, \omega) \stackrel{s}{\hookrightarrow} (X', \omega')$.

Definition

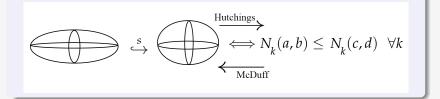
A symplectic capacity,
$$c: \left\{ \begin{array}{c} \text{symplectic} \\ \text{manifolds} \end{array} \right\}
ightarrow \mathbb{R}_{\geq 0}$$
, satisfies:

- Monotonicity: If $(X, \omega) \stackrel{s}{\hookrightarrow} (X', \omega')$ then $c(X) \leq c(X')$.
- Conformality/Scaling: for $a \in \mathbb{R} \setminus 0$, $c(X, a\omega) = |a|c(X, \omega)$
- Weak Normalization: $0 < c(B^{2n}(1)) \le c(Z^{2n}(1)) < \infty$

Flexibility of Symplectic Embeddings

$$\mathsf{E}(\mathsf{a},\mathsf{b}):=\left\{rac{\pi|z_1^2|}{\mathsf{a}}+rac{\pi|z_2^2|}{\mathsf{b}}\leq 1
ight\}$$

Theorem (McDuff, 2011)



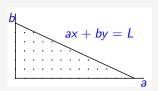
 $N_k(a, b)$ is k^{th} smallest entry in $(am + bn)_{m,n \in \mathbb{Z}_{>0}}$ with repetitions.

$$N(1,4) = 0 1 2 3 4 4 5 5 5 5$$
$$N(2,2) = 0 2 2 4 4 4 6 6 6 6$$

Thus $E(1,4) \stackrel{s}{\hookrightarrow} E(2,2) = B(2)!$

Digiosia, Nelson, Ning, Weiler, & Yang

ECH Capacities



- $N_k(a, b)$ are the **ECH capacities** of E(a, b).
- $c_k(E(a, b))$ is the smallest L such that k + 1 lattice points are contained in the region of \mathbb{R}^2 bounded by ax + by = L and the x- and y-axes.

Definition

Given a symplectic 4-manifold (X, ω) , its **ECH capacities** are a sequence of real numbers

$$0 = c_0(X, \omega) < c_1(X, \omega) \le c_2(X, \omega) \le ... \le \infty$$

such that

$$(X,\omega) \stackrel{s}{\hookrightarrow} (X',\omega') \Rightarrow c_k(X,\omega) \leq c_k(X',\omega') \, \forall \, k.$$

ECH capacities

Dr. Morgan

Some properties of ECH capacities:

• ECH capacities *obstruct* low-dimensional symplectic embeddings:

 $(X,\omega) \not\xrightarrow{s} (X',\omega') \Leftarrow \exists k c_k(X,\omega) > c_k(X',\omega')$

- $c_1(B^4(r)) = r$ and $c_1(Z^4(R)) = R \Rightarrow 4D$ Gromov nonsqueezing.
- $\lim_{k\to\infty} \frac{c_k(X,\omega)^2}{k} = 4 \int_X \omega \wedge \omega$, relating ECH capacities to volume.
- $c_k(X, \omega)$ measures the ω -area of a surface in X solving a "J-holomorphic curve" PDE with fixed boundary on ∂X ; we have

$$(X,\omega) \stackrel{s}{\hookrightarrow} (X',\omega') \Rightarrow c_k(X,\omega) \leq c_k(X',\omega')$$

because properties of ECH force the surface in X' with fixed boundary to agree in X with the surface for X.

• The same reasoning implies the "Action Inequality" later in the talk.

Symplectic Toric Domains

Symplectic toric domains are defined by a polytope $\Omega \subset \mathbb{R}^2_{\geq 0}$

$$X_\Omega = \{(z_1, z_2) \in \mathbb{C}^2 \mid (\pi |z_1|^2, \pi |z_2|^2) \in \Omega\}$$

•
$$B^4(a) := \{\pi |z_1|^2 + \pi |z_2|^2 \le a\}$$

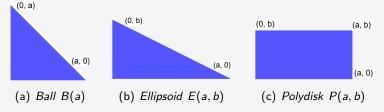
isosceles right triangle with side length a .

•
$$E(a,b) := \{ \frac{\pi |z_1|^2}{a} + \frac{\pi |z_2|^2}{b} \le 1 \}$$

right triangle with lengths a, b .

•
$$P(a, b) := \{\pi | z_1 |^2 \le a, \pi | z_2 |^2 \le b\}$$

rectangle of sides *a*, *b*.



Digiosia, Nelson, Ning, Weiler, & Yang

Symplectic Embeddings on the Virtual BeECH

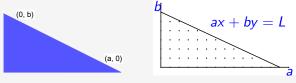
Dr. Morgan

Dr. Morgan

The combinatorics of the polytopes Ω tell us about embeddings of their toric domains X_{Ω} !

- The area of Ω equals the volume $\int_{X_{\Omega}} \omega_0 \wedge \omega_0$ of X_{Ω} .
- In some cases we can compute $c_k(X_\Omega)$ from the geometry of
 - Ω. When $X_{\Omega} = E(a, b)$, we have

(d) Ellipsoid E(a, b)



(e) $c_k(E(a, b)) P(a, b)$

And we can also compute $c_k(X_{\Omega})$ from Ω in more complex ways for more general Ω .

Soon you'll see even more ways to obstruct embeddings of X_Ω using combinatorics of Ω.

Let $\Omega = \{(x, y) \in \mathbb{R}^2 \mid 0 \le x \le A, \ 0 \le y \le f(x)\}, \ f \ge 0$ nonincreasing.

Definition

If f is concave, then X_{Ω} is a **convex** toric domain. If f is convex, then X_{Ω} is a **concave** toric domain.

Theorem (Cristofaro-Gardiner '19, generalizing McDuff '11)

If X_{Ω} is concave and $X_{\Omega'}$ is convex, then

$$X_{\Omega} \stackrel{s}{\hookrightarrow} X_{\Omega'} \Leftrightarrow c_k(X_{\Omega}) \le c_k(X_{\Omega'}) \, \forall \, k,$$
 (0.1)

However, if X_{Ω} is convex (e.g. a polydisk), then (0.1) is *not* an equivalence, only \Rightarrow !

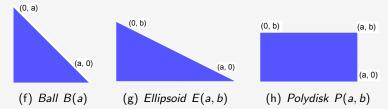
So we need other means to **obstruct** $X_{\Omega} \stackrel{s}{\hookrightarrow} X_{\Omega'}$.

Embeddings of toric domains "beyond" ECH capacities Dr. Morgan

Definition

If f is concave, then X_{Ω} is a **convex** toric domain. If f is convex, then X_{Ω} is a **concave** toric domain.

Polydisks are convex, not concave!



Our results use the combinatorics of Ω "beyond" the ECH capacities of X_{Ω} to obstruct

$$P(a,1) \stackrel{s}{\hookrightarrow} E(bc,c)$$

based on the relationships between a, b, and c.

Digiosia, Nelson, Ning, Weiler, & Yang

Known results for polydisks $\stackrel{s}{\hookrightarrow}$ ellipsoids

Theorem (Hutchings, 2016)

Let $1 \le a \le 2$ and $b \in \mathbb{Z}_{>0}$. Then $P(a, 1) \xrightarrow{s} E(bc, c)$ if and only if $a + b \le bc$.

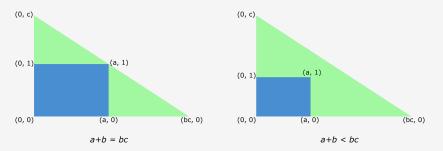


Figure: $a + b \le bc$ means that the polydisk P(a, 1) can be directly included into the ellipsoid E(bc, c).

Yirong

Theorem (Ning-Yang, 2020)

Let $d_0 \ge 3$ be a prime number. Let $1 \le a \le (2d_0 - 1)/d_0$, c > 0and b = p/2 for some odd integer $p \ge 4d_0 + 1$. Then $P(a, 1) \stackrel{s}{\hookrightarrow} E(bc, c)$ if and only if $a + b \le bc$.

Yirong

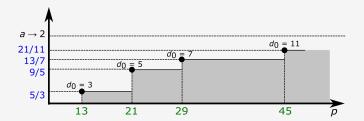


Figure: Each dot represents some prime $d_0 \ge 3$ and the shaded regions show the applicability of our theorem. With an increasing restriction on p, the theorem works for more $a \ge 1$ approaching a = 2.

Yirong

For $p \leq 13$, we can provide sharp obstructions for $1 \leq a < 2$.

Theorem (Ning-Yang, 2020)

Let $1 \le a \le 4/3$, c > 0 and b = p/2 for some odd integer p > 2. Then $P(a, 1) \stackrel{s}{\hookrightarrow} E(bc, c)$ if and only if $a + b \le bc$.

Theorem (Ning-Yang, 2020)

Let $1 \le a \le 3/2$, c > 0 and b = p/2 for some odd integer $p \ge 7$. Then $P(a, 1) \stackrel{s}{\hookrightarrow} E(bc, c)$ if and only if $a + b \le bc$.

Definition

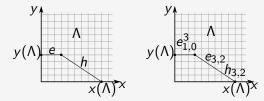
A convex generator is a convex integral path Λ such that:

- Each edge of Λ is labeled 'e' or 'h'.
- Horizontal and vertical edges can only be labeled 'e'.

Definition

If Λ be a convex generator, then its *ECH index* is defined to be

$$I(\Lambda) = 2(L(\Lambda) - 1) - h(\Lambda).$$



Symplectic Embeddings on the Virtual BeECH

Yirong

Action and minimal convex generators

The symplectic action of a convex generator Λ wrt P(a, 1) is

$$A_{P(a,1)}(\Lambda) = x(\Lambda) + ay(\Lambda).$$

The **symplectic action** of Λ with respect to E(bc, c) is

$$A_{E(bc,c)}(\Lambda) = r$$
, where $cx + bcy = r$ is tangent to Λ .

A convex generator Λ with $I(\Lambda) = 2k$ is **minimal** for E(bc, c) if:

- All edges of Λ are labeled 'e'.
- A uniquely minimizes $A_{E(bc,c)}$ among convex generators with I = 2k and all edges labeled 'e'.
- **Key**: $e_{p,2}^{d_0}$ is **minimal** for E(pc/2, c) for any c > 0, $d_0 \ge 1$.

Remark

If $I(\Lambda) = 2k$ and Λ is minimal for X_{Ω} then $A_{\Omega}(\Lambda) = c_k(X_{\Omega})$.

Yirong

Definition (Hutchings, 2016)

Let Λ, Λ' be convex generators s.t. all edges of Λ' are labeled 'e'. We write $\Lambda \leq_{P(a,1), E(bc,c)} \Lambda'$ whenever:

Yirong

(Index requirement)

$$I(\Lambda) = I(\Lambda');$$

(Action inequality)

$$A_{P(a,1)}(\Lambda) \leq A_{E(bc,c)}(\Lambda');$$

(*J*-holomorphic curve genus inequality)

$$x(\Lambda) + y(\Lambda) - h(\Lambda)/2 \ge x(\Lambda') + y(\Lambda') + m(\Lambda') - 1.$$

We abbreviate ' \leq ' for ' $\leq_{P(a,1),E(bc,c)}$ ' between generators when when a, b and c are specified without ambiguity.

Theorem (The Hutchings criterion, 2016)

Let X_{Ω} and $X_{\Omega'}$ be convex toric domains. Suppose $X_{\Omega} \stackrel{s}{\hookrightarrow} X_{\Omega'}$. Let Λ' be a convex generator which is minimal for $X_{\Omega'}$. Then there exists a convex generator Λ with $I(\Lambda) = I(\Lambda')$, a nonnegative integer n, and product decompositions

$$\Lambda = \Lambda_1 \cdots \Lambda_n$$
 and $\Lambda' = \Lambda'_1 \cdots \Lambda'_n$,

such that

1
$$\Lambda_i \leq_{\Omega,\Omega'} \Lambda'_i$$
 for each $i = 1, \ldots, n$.

2 Given $i, j \in \{1, ..., n\}$, if $\Lambda_i \neq \Lambda_j$ or $\Lambda'_i \neq \Lambda'_j$, then Λ_i and Λ_j have no elliptic orbit in common.

3 If S is any subset of
$$\{1, ..., n\}$$
, then $I\left(\prod_{i \in S} \Lambda_i\right) = I\left(\prod_{i \in S} \Lambda'_i\right)$.

In our case, $X_{\Omega} = P(a, 1)$ and $X_{\Omega'} = E(bc, c)$.

Theorem (Ning-Yang, 2020)

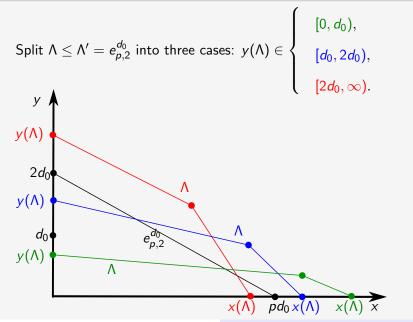
Let $d_0 \ge 3$ be a prime number. Let $1 \le a \le (2d_0 - 1)/d_0$, c > 0and b = p/2 for some odd integer $p \ge 4d_0 + 1$. Then $P(a, 1) \stackrel{s}{\hookrightarrow} E(bc, c)$ if and only if $a + b \le bc$.

Key: use Hutchings' criterion to show the non-existence of $P(a,1) \stackrel{s}{\hookrightarrow} E(bc,c)$ when a+b > bc.

Take $\Lambda' = e_{p,2}^{d_0}$, we need to show the non-existence of Λ such that • (Trivial factorization) $\Lambda < \Lambda'$.

- (Full factorization) $\Lambda = \prod_i \Lambda_i$ where $\Lambda_i \leq e_{p,2}$ for $1 \leq i \leq d_0$.
- A factors into $2 \le k \le d_0 1$ factors.

Eliminating the trivial factorization

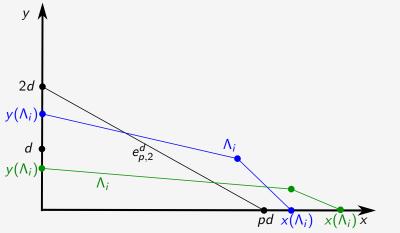


Digiosia, Nelson, Ning, Weiler, & Yang

Symplectic Embeddings on the Virtual BeECH

Hao

Previous argument can also show that for $d \le d_0 - 1$, $\Lambda_i \le e_{p,2}^d$ is only possible if $y(\Lambda_i) = d$.

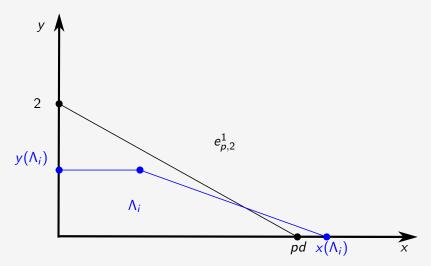


Such Λ_i **must contain an** $e_{1,0}$ **factor!** Now use primality of d_0 .

Digiosia, Nelson, Ning, Weiler, & Yang

Eliminating the full factorization

In this case, we only need to consider $y(\Lambda_i) < 2$. Explicit index computations finishes the proof.



Digiosia, Nelson, Ning, Weiler, & Yang

Symplectic Embeddings on the Virtual BeECH

Hao

Theorem (Ning-Yang)

Let $d_0 \ge 3$ be a prime number. Let $1 \le a \le (2d_0 - 1)/d_0$, c > 0and b = p/2 for some odd integer $p \ge 4d_0 + 1$. Then $P(a,1) \xrightarrow{s} E(bc,c)$ if and only if $a + b \le bc$.

The bound $(2d_0 - 1)/d_0 \le 2$ on *a* is "optimal" in this sense:

Example

Under the same hypothesis, let $\varepsilon > 0$ and take instead

 $a=(2d_0-1)/d_0+\varepsilon.$

There always exists a convex generator $\Lambda \leq e_{p,2}^{d_0}$ for $d_0 \geq 2$, when

$$a+b-\varepsilon/2 < bc < a+b$$
,

i.e. Hutchings' criterion cannot provide sharp obstructions.

The restriction $p \ge 4d_0 + 1$ is similarly "optimal":

Example

Under the same hypothesis, consider $a = (2d_0 - 1)/d_0$ and take

$$p = 4d_0 - 3 \le 4d_0 + 1.$$

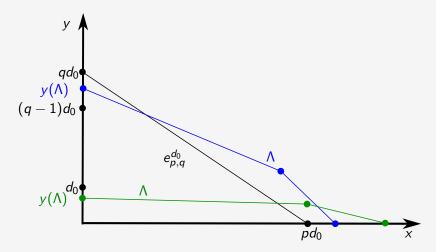
There always exists a convex generator $\Lambda \leq e_{p,2}^{d_0}$ for $d_0 \geq 2$, when

$$a + b - \frac{d_0 - 1}{2d_0^2} < bc < a + b$$

again in which case Hutchings' criterion cannot provide sharp obstructions.

General case when q > 2?

When b = p/q and q > 2, "Beyond ECH" tools are insufficient to disprove the existence of $\Lambda \le e_{p,q}^{d_0}$ for a + b > bc.



Hao

References and further reading

Dusa McDuff What is symplectic geometry? (Survey for students)

Felix Schlenk Symplectic embedding problems, old and new (Detailed Survey)

Cristofaro-Gardiner, Symplectic embeddings from concave toric domains into convex ones, J. Diff. Geom. 112 (2019), 199-232. Digiosia, Nelson, Ning, Weiler, Yang, Symplectic embeddings of four-dimensional polydisks into half integer ellipsoids, arXiv:2010.06687 Hutchings, Beyond ECH Capacities, Geom. & Topol. 20 (2016). Hutchings, Quantitative embedded contact homology, J. Diff. Geom. 88 (2011), no. 2, 231–266.

McDuff, *The Hofer Conjecture on Embedding Symplectic Ellipsoids*, J. Diff. Geom., 88 (2011), no. 3, 519–532.

Digiosia, Nelson, Ning, Weiler, & Yang

Symplectic Embeddings on the Virtual BeECH