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Manifolds Prof. Jo

Definition

A smooth n-manifold X is a topological space that looks locally
like Rn and admits a global differentiable structure.

X

Ui

Uj

ϕi
ϕj

ϕij

ϕji

Rn Rn

A smooth atlas on X has

Charts (Ui , ϕi ) for
which the Ui cover X .

The ϕi : Ui → Rn are
diffeomorphisms onto
an open subset of Rn.

The transition maps are given by

ϕij = ϕj ◦ ϕ−1
i |ϕi (Ui∩Uj ) : ϕi (Ui ∩ Uj)→ ϕj(Ui ∩ Uj).
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Klein Bottles! Prof. Jo

We need 4 dimensions in order to be embedded!
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Tangent spaces and Differential forms Prof. Jo

Definition

The tangent space of X n, denoted TpX , is a vector space “at” a
point p of the manifold diffeomorphic to Rn.

Definition

A 1-form is a linear function: TpX → R.

Directional derivatives Dv f (p) = ∇f (p) · v
|v | and fds from

∮
C fds.

Differential forms are a coordinate independent approach to calculus.
Great for defining integrals over curves, surfaces, and manifolds!
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Linear approximation of an owl Prof. Jo
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What is a symplectic manifold? Leo

Definition

A 2-form ω on a manifold X is a smooth choice of anti-symmetric
bilinear functions ωp : TpX × TpX → R for each p ∈ X .

At the infinitesimal level,

ω measures oriented area

spanned by vectors u and

v at a point p.

Definition

A symplectic manifold is a pair (X 2n, ω)
such that ω is a smooth 2-form satisfying

Closedness: dω = 0

Nondegeneracy: ωn is nonvanishing,
i.e. a volume form.

Examples

dx ∧ dy on R2∑n
i=1 dxi ∧ dyi on R2n
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Examples of symplectic manifolds Leo

Given Cn with ω0 =
√
−1
2

∑n
j=1 dzj ∧ dz j ,

consider the symplectic manifolds with boundary

Ball: B2n(r) := {z ∈ Cn | π|z2
1 |+ ...+ π|z2

n | ≤ r}

Cylinder: Z 2n(R) := B2(R)× Cn−1

Ellipsoid: E (a, b) :=

{
z ∈ C2

∣∣∣∣ π|z2
1 |

a
+
π|z2

2 |
b
≤ 1

}
Polydisc: P(a, b) := {z ∈ C2 | π|z2

1 | ≤ a, π|z2
2 | ≤ b}
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Symplectomorphisms and Symplectic Embeddings Leo

A diffeomorphism is a smooth bijective map with smooth inverse.

Definition

Two symplectic manifolds (X , ω) and (X ′, ω′) are symplectomorphic if
there exists a diffeomorphism f : (X , ω)→ (X ′, ω′) s.t. f ∗ω′ = ω.

Here f ∗ω′(·, ·) = ω′(df ·, df ·)

Definition

A manifold (X , ω) is said to symplectically embed into (X ′, ω′) if

there exists an injective smooth map f : X
s
↪→ X ′ s.t. f is a

symplectomorphism onto its image.

Symplectomorphisms are volume-preserving. Are all volume
preserving maps are symplectomorphisms?
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Rigidity in Symplectic Geometry Leo

Are symplectic embeddings restricted by more than volume?

Theorem (Gromov Nonsqueezing, 1985)

B2n(r) symplectically embeds into Z 2n(R) = B2(R)× R2n−2 if
and only if r ≤ R
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Symplectic Capacities Leo

Definition

The Gromov width of (X , ω) of dimension 2n is the supremum
over real numbers r such that B2n(r) embeds symplectically into
X .

Symplectic capacity ; obstructions of symplectic embeddings:

If c(X , ω1) > c(X ′, ω′) then @ (X , ω)
s
↪→ (X ′, ω′).

Definition

A symplectic capacity, c :

 symplectic

manifolds

→ R≥0, satisfies:

Monotonicity: If (X , ω)
s
↪→ (X ′, ω′) then c(X ) ≤ c(X ′).

Conformality/Scaling: for a ∈ R \ 0, c(X , aω) = |a|c(X , ω)

Weak Normalization: 0 < c(B2n(1)) ≤ c(Z 2n(1)) <∞
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Flexibility of Symplectic Embeddings Leo

E (a, b) :=

{
π|z2

1 |
a

+
π|z2

2 |
b
≤ 1

}

Theorem (McDuff, 2011)

Nk(a, b) is kth smallest entry in (am + bn)m,n∈Z≥0
with repetitions.

N(1, 4) = 0 1 2 3 4 4 5 5 5 5

N(2, 2) = 0 2 2 4 4 4 6 6 6 6

Thus E (1, 4)
s
↪→ E (2, 2) = B(2)!
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ECH Capacities Dr. Morgan

a

b
ax + by = L

Nk(a, b) are the ECH capacities of E (a, b).

ck(E (a, b)) is the smallest L such that k + 1
lattice points are contained in the region of
R2 bounded by ax + by = L and the x- and
y -axes.

Definition

Given a symplectic 4-manifold (X , ω), its ECH capacities are a sequence
of real numbers

0 = c0(X , ω) < c1(X , ω) ≤ c2(X , ω) ≤ ... ≤ ∞

such that

(X , ω)
s
↪→ (X ′, ω′)⇒ ck(X , ω) ≤ ck(X ′, ω′)∀ k.
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ECH capacities Dr. Morgan

Some properties of ECH capacities:

ECH capacities obstruct low-dimensional symplectic embeddings:

(X , ω) 6 s↪→ (X ′, ω′)⇐ ∃ k ck(X , ω) > ck(X ′, ω′)

c1(B4(r)) = r and c1(Z 4(R)) = R ⇒ 4D Gromov nonsqueezing.

limk→∞
ck (X ,ω)2

k = 4
∫
X
ω ∧ ω, relating ECH capacities to volume.

ck(X , ω) measures the ω-area of a surface in X solving a
“J-holomorphic curve” PDE with fixed boundary on ∂X ; we have

(X , ω)
s
↪→ (X ′, ω′)⇒ ck(X , ω) ≤ ck(X ′, ω′)

because properties of ECH force the surface in X ′ with fixed
boundary to agree in X with the surface for X .

The same reasoning implies the “Action Inequality” later in
the talk.
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Symplectic Toric Domains Dr. Morgan

Symplectic toric domains are defined by a polytope Ω ⊂ R2
≥0

XΩ = {(z1, z2) ∈ C2 | (π|z1|2, π|z2|2) ∈ Ω}.

B4(a) := {π|z1|2 + π|z2|2 ≤ a}
isosceles right triangle with side length a.

E (a, b) := {π|z1|2
a + π|z2|2

b ≤ 1}
right triangle with lengths a, b.

P(a, b) := {π|z1|2 ≤ a, π|z2|2 ≤ b}
rectangle of sides a, b.

(0, a)

(a, 0)

(a) Ball B(a)

(0, b)

(a, 0)

(b) Ellipsoid E(a, b)

(0, b) (a, b)

(a, 0)

(c) Polydisk P(a, b)
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Geometry of Polytopes Dr. Morgan

The combinatorics of the polytopes Ω tell us about embeddings of
their toric domains XΩ!

The area of Ω equals the volume
∫
XΩ
ω0 ∧ ω0 of XΩ.

In some cases we can compute ck(XΩ) from the geometry of
Ω. When XΩ = E (a, b), we have

(0, b)

(a, 0)

(d) Ellipsoid E(a, b)

a

b
ax + by = L

(e) ck(E(a, b)) P(a, b)

And we can also compute ck(XΩ) from Ω in more complex
ways for more general Ω.

Soon you’ll see even more ways to obstruct embeddings of XΩ

using combinatorics of Ω.
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ECH capacities and embeddings of toric domains Dr. Morgan

Let Ω = {(x , y) ∈ R2 | 0 ≤ x ≤ A, 0 ≤ y ≤ f (x)}, f ≥ 0 nonincreasing.

Definition

If f is concave, then XΩ is a convex toric domain. If f is convex,
then XΩ is a concave toric domain.

Theorem (Cristofaro-Gardiner ’19, generalizing McDuff ’11)

If XΩ is concave and XΩ′ is convex, then

XΩ
s
↪→ XΩ′ ⇔ ck(XΩ) ≤ ck(XΩ′) ∀ k, (0.1)

However, if XΩ is convex (e.g. a polydisk), then (0.1) is not an
equivalence, only ⇒!

So we need other means to obstruct XΩ
s
↪→ XΩ′ .
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Embeddings of toric domains “beyond” ECH capacities Dr. Morgan

Definition

If f is concave, then XΩ is a convex toric domain. If f is convex,
then XΩ is a concave toric domain.

Polydisks are convex, not concave!

(0, a)

(a, 0)

(f) Ball B(a)

(0, b)

(a, 0)

(g) Ellipsoid E(a, b)

(0, b) (a, b)

(a, 0)

(h) Polydisk P(a, b)

Our results use the combinatorics of Ω “beyond” the ECH
capacities of XΩ to obstruct

P(a, 1)
s
↪→ E (bc, c)

based on the relationships between a, b, and c .
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Known results for polydisks
s
↪→ ellipsoids Yirong

Theorem (Hutchings, 2016)

Let 1 ≤ a ≤ 2 and b ∈ Z>0. Then P(a, 1)
s
↪−→ E (bc, c) if and only

if a + b ≤ bc.

Figure: a + b ≤ bc means that the polydisk P(a, 1) can be directly
included into the ellipsoid E (bc, c).
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New results for polydisks
s
↪→ ellipsoids Yirong

Theorem (Ning-Yang, 2020)

Let d0 ≥ 3 be a prime number. Let 1 ≤ a ≤ (2d0 − 1)/d0, c > 0
and b = p/2 for some odd integer p ≥ 4d0 + 1. Then

P(a, 1)
s
↪−→ E (bc, c) if and only if a + b ≤ bc.

Figure: Each dot represents some prime d0 ≥ 3 and the shaded regions
show the applicability of our theorem. With an increasing restriction on
p, the theorem works for more a ≥ 1 approaching a = 2.
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When p is small Yirong

For p ≤ 13, we can provide sharp obstructions for 1 ≤ a < 2.

Theorem (Ning-Yang, 2020)

Let 1 ≤ a ≤ 4/3, c > 0 and b = p/2 for some odd integer p > 2.

Then P(a, 1)
s
↪−→ E (bc, c) if and only if a + b ≤ bc.

Theorem (Ning-Yang, 2020)

Let 1 ≤ a ≤ 3/2, c > 0 and b = p/2 for some odd integer p ≥ 7.

Then P(a, 1)
s
↪−→ E (bc, c) if and only if a + b ≤ bc.
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Convex generators Yirong

Definition

A convex generator is a convex integral path Λ such that:

Each edge of Λ is labeled ‘e’ or ‘h’.

Horizontal and vertical edges can only be labeled ‘e’.

Definition

If Λ be a convex generator, then its ECH index is defined to be

I (Λ) = 2(L(Λ)− 1)− h(Λ).

y y

xx

Λ Λ

y(Λ) y(Λ)

x(Λ)

h
e

e3
1,0

e3,2
h3,2

x(Λ)
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Action and minimal convex generators Yirong

The symplectic action of a convex generator Λ wrt P(a, 1) is

AP(a,1)(Λ) = x(Λ) + ay(Λ).

The symplectic action of Λ with respect to E (bc, c) is

AE(bc,c)(Λ) = r , where cx + bcy = r is tangent to Λ.

A convex generator Λ with I (Λ) = 2k is minimal for E (bc, c) if:

All edges of Λ are labeled ‘e’.

Λ uniquely minimizes AE(bc,c) among convex generators with
I = 2k and all edges labeled ‘e’.

Key: ed0
p,2 is minimal for E (pc/2, c) for any c > 0, d0 ≥ 1.

Remark

If I (Λ) = 2k and Λ is minimal for XΩ then AΩ(Λ) = ck(XΩ).
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Necessary conditions for J-curve in cobordism Yirong

Definition (Hutchings, 2016)

Let Λ,Λ′ be convex generators s.t. all edges of Λ′ are labeled ‘e’.
We write Λ ≤P(a,1),E(bc,c) Λ′ whenever:

1 (Index requirement)

I (Λ) = I (Λ′);

2 (Action inequality)

AP(a,1)(Λ) ≤ AE(bc,c)(Λ′);

3 (J-holomorphic curve genus inequality)

x(Λ) + y(Λ)− h(Λ)/2 ≥ x(Λ′) + y(Λ′) + m(Λ′)− 1.

We abbreviate ‘≤’ for ‘≤P(a,1),E(bc,c)’ between generators when
when a, b and c are specified without ambiguity.
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The Hutchings criterion Hao

Theorem (The Hutchings criterion, 2016)

Let XΩ and XΩ′ be convex toric domains. Suppose XΩ
s
↪−→ XΩ′ .

Let Λ′ be a convex generator which is minimal for XΩ′ . Then there
exists a convex generator Λ with I (Λ) = I (Λ′), a nonnegative
integer n, and product decompositions

Λ = Λ1 · · ·Λn and Λ′ = Λ′1 · · ·Λ′n,
such that

1 Λi ≤Ω,Ω′ Λ′i for each i = 1, . . . , n.

2 Given i , j ∈ {1, . . . , n}, if Λi 6= Λj or Λ′i 6= Λ′j , then Λi and Λj

have no elliptic orbit in common.

3 If S is any subset of {1, . . . , n}, then
I
(∏

i∈S Λi

)
= I

(∏
i∈S Λ′i

)
.

In our case, XΩ = P(a, 1) and XΩ′ = E (bc, c).
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Sketch of Proof Hao

Theorem (Ning-Yang, 2020)

Let d0 ≥ 3 be a prime number. Let 1 ≤ a ≤ (2d0 − 1)/d0, c > 0
and b = p/2 for some odd integer p ≥ 4d0 + 1. Then

P(a, 1)
s
↪−→ E (bc, c) if and only if a + b ≤ bc.

Key: use Hutchings’ criterion to show the non-existence of

P(a, 1)
s
↪−→ E (bc, c) when a + b > bc.

Take Λ′ = ed0
p,2, we need to show the non-existence of Λ such that

(Trivial factorization) Λ ≤ Λ′.

(Full factorization) Λ =
∏

i Λi where Λi ≤ ep,2 for 1 ≤ i ≤ d0.

Λ factors into 2 ≤ k ≤ d0 − 1 factors.
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Eliminating the trivial factorization Hao

Split Λ ≤ Λ′ = ed0
p,2 into three cases: y(Λ) ∈


[0, d0),

[d0, 2d0),

[2d0,∞).
y

2d0

d0 ed0
p,2

pd0 x

Λ

y(Λ)

x(Λ)

Λ

x(Λ)

y(Λ)

y(Λ)
Λ

x(Λ)
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Eliminating factorizations with 2 ≤ k ≤ d0 − 1 factors Hao

Previous argument can also show that for d ≤ d0 − 1, Λi ≤ edp,2 is
only possible if y(Λi ) = d .

y

2d

d edp,2

pd x

Λi

x(Λi )

y(Λi )

y(Λi )
Λi

x(Λi )

Such Λi must contain an e1,0 factor! Now use primality of d0.
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Eliminating the full factorization Hao

In this case, we only need to consider y(Λi ) < 2. Explicit index
computations finishes the proof.

y

2

e1
p,2

pd x

Λi

x(Λi )

y(Λi )
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“Optimal” restrictions Hao

Theorem (Ning-Yang)

Let d0 ≥ 3 be a prime number. Let 1 ≤ a ≤ (2d0 − 1)/d0, c > 0
and b = p/2 for some odd integer p ≥ 4d0 + 1. Then

P(a, 1)
s
↪−→ E (bc, c) if and only if a + b ≤ bc.

The bound (2d0 − 1)/d0 ≤ 2 on a is “optimal” in this sense:

Example

Under the same hypothesis, let ε > 0 and take instead

a = (2d0 − 1)/d0 + ε.

There always exists a convex generator Λ ≤ ed0
p,2 for d0 ≥ 2, when

a + b − ε/2 < bc < a + b,

i.e. Hutchings’ criterion cannot provide sharp obstructions.
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“Optimal” restrictions Hao

The restriction p ≥ 4d0 + 1 is similarly “optimal”:

Example

Under the same hypothesis, consider a = (2d0 − 1)/d0 and take

p = 4d0 − 3 ≤ 4d0 + 1.

There always exists a convex generator Λ ≤ ed0
p,2 for d0 ≥ 2, when

a + b − d0 − 1

2d2
0

< bc < a + b,

again in which case Hutchings’ criterion cannot provide sharp
obstructions.
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General case when q > 2? Hao

When b = p/q and q > 2, “Beyond ECH” tools are insufficient to
disprove the existence of Λ ≤ ed0

p,q for a + b > bc.

y

qd0

d0

ed0
p,q

pd0 x

(q − 1)d0

Λ

y(Λ)

y(Λ)
Λ
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