Contact encounters in the third dimension

Jo Nelson

Rice University Undergraduate Colloquium January 27, 2020

Jo Nelson Contact encounters in the third dimension

Classical mechanics

The **phase space** \mathbb{R}^{2n} of a system consists of the position and momentum of a particle.

Lagrange: The equations of motion minimize action $\sim n$ second order differential equations.

Hamilton-Jacobi: The *n* Euler-Lagrange equations \sim a Hamiltonian system of 2*n* equations.

Motion is governed by conservation of energy, a Hamiltonian H.

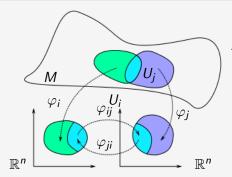
- Flow lines of $X_H = -J_0 \nabla H$ are solutions.
- Phase space is (secretly) a symplectic manifold.
- Certain time dependent *H* give rise to **contact manifolds**.
- Flow lines of the **Reeb vector field** are solutions.

Contact geometry shows up in...

Restricted three body problems, Low energy space travel Geodesic flow, Liquid crystals

Definition

A **smooth** *n*-**manifold** is a topological space that looks locally like \mathbb{R}^n and admits a global differentiable structure.

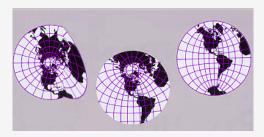


A smooth atlas on M has

- Charts (U_i, φ_i) for which the U_i cover M.
- The φ_i: U_i → ℝⁿ are diffeomorphisms onto an open subset of ℝⁿ.

The **transition maps** are given by $\varphi_{ij} = \varphi_j \circ \varphi_i^{-1}|_{\varphi_i(U_i \cap U_j)} \colon \varphi_i(U_i \cap U_j) \to \varphi_j(U_i \cap U_j).$

Here is a nondifferentiable atlas of charts for the globe.

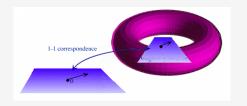


In the middle chart the Tropic of Cancer is a smooth curve, whereas in the first it has a sharp corner.

But an atlas of a differentiable manifold necessitates that the transition maps between charts be smooth.

Definition

The *tangent space* of M^n , denoted T_pM , is a vector space "at" a point p of the manifold diffeomorphic to \mathbb{R}^n .



Definition

A 1-form is a linear function: $T_pM \to \mathbb{R}$

Differential forms are a coordinate independent approach to calculus.

They're great for defining integrals over curves, surfaces, and manifolds!

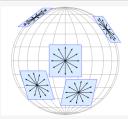
Hyperplane fields

A 2-plane field ξ on M^3 is the kernel of a 1-form α . $\xi = \ker \alpha_p := \{ v \in T_pM \mid \alpha(v) = 0 \}$

It is a smooth choice of an \mathbb{R}^2 subspace in T_pM at each point p.

Definition

 ξ is **integrable** if at each point p there is a small open chunk of a surface S in M containing p for which $T_p S = \xi_p$.



Nice and integrable.

Not so much.

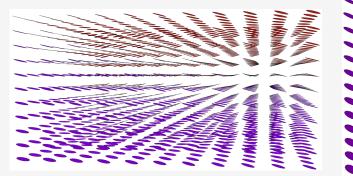
A 2-plane field ξ is a **contact structure** if it is nowhere integrable.

Visualizing a contact structure in \mathbb{R}^3 .

A 2-plane field ξ is a **contact structure** if it is nowhere integrable.

Take a line of planes rotating from $+\infty$ to $-\infty$.

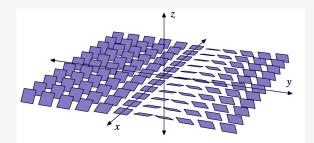
Sweep these lines left-right and up-down.



Contact forms

The kernel of a 1-form α on M^{2n+1} is a contact structure whenever

• $\alpha \wedge (d\alpha)^n$ is a volume form $\Leftrightarrow d\alpha|_{\xi}$ is nondegenerate.

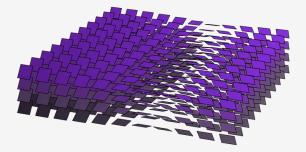


 $\alpha = dz - ydx \qquad \qquad \xi = \ker \alpha = \operatorname{Span} \left\{ \frac{\partial}{\partial y}, y \frac{\partial}{\partial z} + \frac{\partial}{\partial x} \right\}$

Contact forms

The kernel of a 1-form α on M^{2n+1} is a contact structure whenever

• $\alpha \wedge (d\alpha)^n$ is a volume form $\Leftrightarrow d\alpha|_{\xi}$ is nondegenerate.



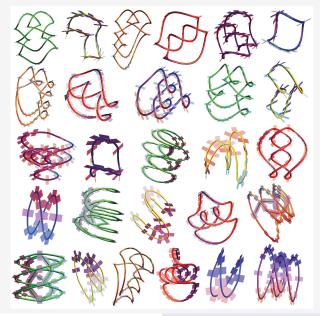
$$\alpha = dz - ydx \qquad \qquad \xi = \ker \alpha = \operatorname{Span}\left\{\frac{\partial}{\partial y}, y\frac{\partial}{\partial z} + \frac{\partial}{\partial x}\right\}$$
$$d\alpha = -dy \wedge dx = dx \wedge dy$$

$$\Rightarrow \quad \alpha \wedge d\alpha \quad = \quad dx \wedge dy \wedge dz$$

Jo Nelson

Contact encounters in the third dimension

Legendrian knots (Lenny Ng)



Jo Nelson

Contact encounters in the third dimension

Theorem (Darboux's theorem)

Let α be a contact form on M^{2n+1} and $p \in M$. Then there are coordinates $(x_1, y_1, ..., x_n, y_n, z)$ on $U_p \subset M$ such that

$$\alpha|_{U_p}=dz-\sum_{i=1}^n y_i dx_i.$$

Thus locally all contact structures (and contact forms) look the same! \sim no local invariants like curvature for us to study.

Gray's Stability Theorem tells us that compact deformations do not produce new contact structures.

Definition

 (M, ξ_1) and (N, ξ_2) are **contactomorphic** whenever there exists a diffeomorphism $f: M \to N$ such that $df(\xi_1) = \xi_2$.

Definition

The Reeb vector field R_{α} on (M, α) is uniquely determined by

•
$$\alpha(R_{\alpha}) = 1$$
,

•
$$d\alpha(R_{\alpha}, \cdot) = 0.$$

The **Reeb flow**, $\varphi_t : M \to M$ is defined by $\dot{\varphi}_t(x) = R_\alpha(\varphi_t(x))$.

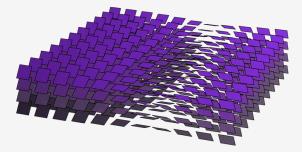
A closed Reeb orbit (modulo reparametrization) satisfies

$$\gamma: \mathbb{R}/T\mathbb{Z} \to M, \quad \dot{\gamma}(t) = R_{\alpha}(\gamma(t)),$$
 (0.1)

and is **embedded** whenever (0.1) is injective.

The Reeb vector field on $(\mathbb{R}^3, \ker \alpha)$.

 R_{α} satisfies $\alpha(R_{\alpha}) = 1$, $d\alpha(R_{\alpha}, \cdot) = 0$. R_{α} is never parallel to ξ .



Let
$$\alpha = dz - ydx$$
, $d\alpha = dx \wedge dy$
 $R_{\alpha} = \frac{\partial}{\partial z}$, $\varphi_t(x, y, z) = (x, y, z + t)$

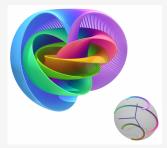
Reeb orbits on S^3

 $S^{3} := \{(u, v) \in \mathbb{C}^{2} \mid |u|^{2} + |v|^{2} = 1\}, \alpha = \frac{i}{2}(ud\bar{u} - \bar{u}du + vd\bar{v} - \bar{v}dv).$ The orbits of the Reeb vector field form the Hopf fibration! Why?

$$R_{\alpha} = iu\frac{\partial}{\partial u} - i\bar{u}\frac{\partial}{\partial\bar{u}} + iv\frac{\partial}{\partial v} - i\bar{v}\frac{\partial}{\partial\bar{v}} = (iu, iv).$$

The flow is $\varphi_t(u, v) = (e^{it}u, e^{it}v)$.

Patrick Massot



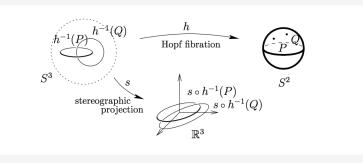
Niles Johnson, $S^3/S^1 = S^2$

Contact encounters in the third dimension

Jo Nelson

The Hopf fibration [Heinz Hopf 1931]

- Describes the 3-sphere in terms of S^1 and S^2 , an example of an *fiber bundle*.
- The 3-sphere is composed of fibers which are all S^1 's, and these fibers get all twisted up, e.g. $S^3 \neq S^1 \times S^2$.
- $h: S^3 \to S^2$ is a many to 1 map such that each distinct point of S^2 comes from a distinct circle of the 3-sphere
- Each circle links with every other circle exactly once.

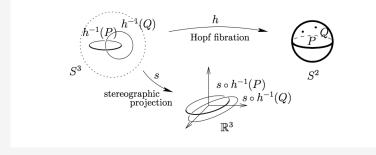


Explicit construction

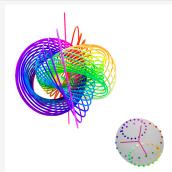
The Hopf fibration is defined by $h(z_0, z_1) = (2z_0\overline{z}_1, |z_0|^2 - |z_1|^2)$. Identify \mathbb{R}^4 with \mathbb{C}^2 and \mathbb{R}^3 with $\mathbb{C} \times \mathbb{R}$:

$$egin{array}{rll} (x_1, x_2, x_3, x_4) & \leftrightarrow (z_0, z_1) & = & (x_1 + i x_2, x_3 + i x_4) \ (x_1, x_2, x_3) & \leftrightarrow (z, x) & = & (x_1 + i x_2, x_3). \end{array}$$

The image of $\{|z_0|^2 + |z_1|^2 = 1\}$ is the unit 2-shere in $\mathbb{C} \times \mathbb{R}$. If $h(z_0, z_1) = h(w_0, w_1)$, then $(w_0, w_1) = (\lambda z_0, \lambda z_1)$ for $\lambda \in \mathbb{C}$, $|\lambda|^2 = 1$

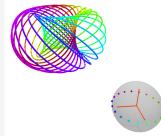


Going around in even more circles...



- A collection of fibers over a circle in S² yields a torus, T² := S¹ × S¹
- Each such pair of tori is linked exactly once.
- Fibers over lines of latitude form nested tori.

- The three-sphere is a union of two solid tori, joined along their boundary. This boundary is the torus of fibers over the "equator" on S^2 .
- One solid torus is formed by the fibers over the Southern hemisphere, and the other by the fibers over the Northern hemisphere.



- Here we represent S³ as a solid 3D ball-esque object, with the understanding that its entire boundary must be collapsed in 4D to just 1 point without collapsing its interior.
- This is similar to how we can form S^2 by taking a filled in 2-disk, blowing it into a bubble and pinching ∂D^2 to a point.
- This is the inverse procedure to a stereographic projection.

A video of the Hopf fibration

The Hopf Fibration

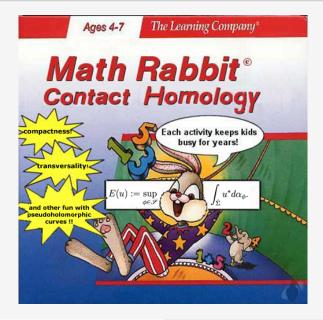
Niles Johnson

http://www.nilesjohnson.net

Jo Nelson

Contact encounters in the third dimension

Thanks!



Jo Nelson Contact encounters in the third dimension