1. Consider a bacteria population \(N(t) \) modeled by the separable equation

\[
\frac{dN}{dt} = \frac{2}{1 + t} N(t).
\]

(a) Explain the practical meaning of the time-dependent growth rate \(2/(1 + t) \).
(b) Find the population \(N(t) \) assuming that \(N(0) = N_0 \).
(c) Find the initial population \(N_0 \) so that \(N(99) = 100,000 \).

2. A tank initially contains 100 gal of water. A sugar-water solution containing 1 lb of sugar per gallon is poured into the tank at a rate of 2 gal/min and the mixture is drained from the tank at the same rate.

(a) If \(Q(t) \) denotes the amount of sugar in the tank at time \(t \) show that \(Q(t) \) satisfies the differential equation:

\[
Q'(t) = 2 - \frac{Q(t)}{100}.
\]

(b) Find the amount of sugar \(Q(t) \) in the tank at any time.
(c) Find the moment of time \(T \) when the concentration of sugar in the tank is \(1/2 \) lb/gal. The final answer may involve a logarithm function.

3. Consider a logistic type population model with a threshold value to growth

\[
\frac{dN}{dt} = rN \left(1 - \frac{N}{K} \right) \left(\frac{N}{K_0} - 1 \right)
\]

where the parameters \(r, K, K_0 \) are positive with \(K_0 < K \).

(a) Find and classify the equilibrium points for this model.
(b) Use qualitative analysis to discuss the long term behavior of the population.
(c) Explain the role of parameter \(K_0 \).

EXAM CONTINUES ON NEXT PAGE!
4. An intravenous administration of a drug can be described by two-compartment model, with compartment 1 representing the blood plasma and compartment 2 representing body tissue. The dynamics of evolution of the system are given by the system of differential equations:

\[
\begin{align*}
{x}'_1 &= -(K_1 + K_3)x_1 + K_2x_2 \\
{x}'_2 &= K_1x_1 - K_2x_2
\end{align*}
\]

with \(K_1, K_2, K_3\) positive parameters.

(a) Draw a schematic diagram that shows the compartments and the flows into and out of them.

(b) Solve this system of differential equations for the special case \(K_1 = 1, K_2 = K_3 = 2\) and with the initial conditions \(x_1(0) = 10, x_2(0) = 0\). What happens in the limit as \(t\) goes to infinity?

(c) Sketch the phase plane portrait for the case when \(K_1 = 1, K_2 = K_3 = 2\). Determine the type and stability of the equilibrium point \((0, 0)\).

5. Consider two interacting species with populations \(x(t)\) and \(y(t)\) such that the first species is a predator of the second and is not able to survive in the absence of the prey; the second species thrives on its own but has limited resources. Model the interactions between the species with a system of differential equations. You are not required to solve the system.