Math 212 - Practice Exam 1

May 19th, 2006

1. Let \(P = (1, 1, 1), Q = (-1, 0, 5), R = (2, 3, -2). \)
 (a) Find the equation of the plane through the three points \(P, Q \) and \(R. \)

2. Let \(f(x, y) = y - x^2. \)
 (a) Sketch and describe the level curves of \(f(x, y) = c, \) for \(c = 0, 1, 4. \)
 (b) Sketch and describe the \(x = 0 \) and \(y = 0 \) sections of the graph of \(f(x, y). \)
 (c) Sketch and describe the graph of \(f. \)

3. Let \(c(t) = (t, t^2, 1) \) be the equation for the position of a particle traveling through space.
 (a) Find the velocity of the particle at time \(t. \)
 (b) Find the equation for the tangent line to \(c(t) \) at time \(t = 1. \)

4. (a) Find the equation for the tangent plane of the graph of \(f \) at the point \((x_0, y_0, f(x_0, y_0)) \) for \(f(x, y) = (xe^y)^8 \) and \((x_0, y_0) = (1, 0). \)
 (b) Use the tangent plane found above to approximate \((0.99e^{0.02})^8. \)

5. A bug finds itself in a toxic environment. The toxicity level is given by \(T(x, y) = 2x^2 - 4y^2. \) The bug is at \((-1, 2). \) In what direction should it move to lower the toxicity the fastest.

6. Give a careful statement of the general form of the chain rule. Let \(f(x, y) = x^2 + y \) and \(h(u) = (\sin 3u, \cos 8u). \) Let \(g(u) = f(h(u)). \) Compute \(\frac{dg}{du} \) at \(u = 0 \) directly and by using the chain rule.

7. In what direction is the directional derivative of \(f(x, y) = (x^2 - y^2)/(x^2 + y^2) \) at \((1, 1) \) equal to zero?