1. Compute \(\int_C \mathbf{F}(x,y) \cdot d\mathbf{s} \) for \(\mathbf{F}(x,y) = (x - y, y - x) \) and \(C \) the square bounded by \(x = 0, x = 1, y = 0, y = 1 \).

Solution: One could just parametrize the boundary of the square, but this involves four line segments, so it’s better to use Green’s theorem. Recall that Green’s theorem says that if \(R \) is a region in \(\mathbb{R}^2 \), then
\[
\int_{\text{boundary of } R} \mathbf{F} \cdot d\mathbf{s} = \iint_R \left(\frac{\partial}{\partial x} \text{(second component of } \mathbf{F}) - \frac{\partial}{\partial y} \text{(first component of } \mathbf{F}) \right) dA.
\]
So here we get
\[
\int_C \mathbf{F} \cdot d\mathbf{s} = \int_{x=0}^{x=1} \int_{y=0}^{y=1} -1 - (-1) dA = 0.
\]

2. Compute \(\int_C \mathbf{F}(x,y) \cdot d\mathbf{s} \) for \(\mathbf{F}(x,y) = (\tan^{-1}\left(\frac{y}{x}\right), \ln(x^2 + y^2)) \) and \(C \) the boundary of the region defined by the polar coordinate inequalities \(1 \leq r \leq 2, 0 \leq \theta \leq \pi \).

Solution: We again use Green’s theorem, we get
\[
\int_C \mathbf{F} \cdot d\mathbf{s} = \iint_R \frac{\partial}{\partial x}(\ln(x^2 + y^2)) - \frac{\partial}{\partial y}(\tan^{-1}\left(\frac{y}{x}\right)) dA =
\int \int_R \frac{2x}{x^2 + y^2} - \frac{1}{1 + \tan^2\left(\frac{y}{x}\right) x} dA.
\]
We have to integrate over the region defined by the polar coordinate inequalities \(1 \leq r \leq 2, 0 \leq \theta \leq \pi \). This suggests that we should switch to polar coordinates. The integral then becomes
\[
\int_{r=1}^{r=2} \int_{\theta=0}^{\theta=\pi} \left[\frac{2r \cos(\theta)}{r^2} - \frac{1}{1 + \tan(\theta)^2} \frac{1}{x} \right] r d\theta dr.
\]
Note that we had to add an \(r \)-factor because we switched to polar coordinates. This simplifies to
\[
\int_{r=1}^{r=2} \int_{\theta=0}^{\theta=\pi} 2 \cos(\theta) - \frac{1}{\sin^2(\theta) + \cos^2(\theta)} \frac{1}{\cos(\theta)} d\theta dr.
\]
which becomes
\[
\int_{r=1}^{r=2} \int_{\theta=0}^{\theta=\pi} 2 \cos(\theta) - \cos(\theta) d\theta dr.
\]