These are due in class next Thursday 9/18. You may work together. Then write them up on your own.

(1) You may use things proved or quoted as theorems in class: Suppose \(X \) and \(Y \) are submanifolds of a smooth manifold \(Z \) and \(\dim X + \dim Y < \dim Z \). Then the map \(i : X \hookrightarrow Z \) can be slightly altered so that its image is disjoint from \(Y \). On the other hand if \(\dim X + \dim Y = \dim Z \), what can you say?

(2) The Whitney (or direct) sum of vector bundles \(E_0 \) and \(E_1 \) over \(B \) is a vector bundle over \(B \) whose fiber over \(x \) is \((E_0)_x \oplus (E_1)_x \). It is denoted \(E_0 \oplus E_1 \). (This is not sufficient as a definition but is adequate for this question). Recall that if \(M \) is a submanifold of \(N \) (where \(N \) has a Riemannian metric) then \(N(M \hookrightarrow N) \) is defined as a subbundle of \(T_M(N) \); and \(T(M) \) is naturally isomorphic to a subbundle of \(T_M(N) \). Show that

\[
T_M(N) \cong T(M) \oplus N(M \hookrightarrow N).
\]

Let \(\epsilon^m \) denote any trivial bundle over \(B \) with fiber dimension \(m \). A bundle \(E \) over \(B \) is called **stably trivial** if \(E \oplus \epsilon^k \cong \epsilon^m \) for some \(m \) and \(k \) (obviously \(\text{rank}(E) + k = m \)). Show that the tangent bundle of \(S^n \) is stably trivial as are the tangent bundles of all the orientable surfaces. (Hint: embed). A bundle \(E \) is said to have an inverse bundle, \(-E \), if \(E \oplus -E \cong \epsilon^m \) for some \(m \). Prove that the tangent bundle of any compact manifold has an inverse (same hint).