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Introduction

These notes were written to accompany a mini-course delivered during the conference
“Arithmetic of Surfaces,” which was held at the Lorentz Center in Leiden, during October,
2010. The mini-course was aimed at graduate students and consisted of three lectures. These
notes are a faithful transcript of the material we went over, with some added details and
references. I have resisted the temptation to add any more material. In particular, many
aspects of the arithmetic of del Pezzo surfaces are not treated here (most notably perhaps
the uniqueness of Brauer-Manin obstructions).

In preparing this document, I used the “background material” chapters of my doctoral
dissertation [VA09] quite freely (especially for the first and third lectures); these chapters
were not meant for publication.

Acknowledgements. I thank the conference organizers (Hendrik Lenstra, Cecilia Salgado,
Lenny Taelman and Ronald van Luijk) for inviting me to give this mini-course and for their
hospitality in Leiden. I also thank the staff at the Lorentz Center for all their help and
professionalism. Finally, I thank Jean-Louis Colliot-Thélène for comments on these notes.

1. Lecture 1: Geometry of del Pezzo surfaces

1.1. Guiding questions in diophantine geometry. Let k be a global field, i.e., a finite
extension of Q or Fp(t) for some prime p, let Ak denote its ring of adèles, and let X be
a smooth projective geometrically integral variety over k. Generally speaking, diophantine
geometers seek to “describe” the set X(k) of k-rational points of X. For example, we are
interested in determining whether X(k) is empty or not. If X(k) 6= ∅, then we may further
want to know something about the qualitative nature of X(k): is it dense for the Zariski
topology of X? Is the image of the natural embedding X(k) ↪→ X(Ak) dense for the adèlic
topology? If not, can we account for the paucity of k-rational points? We may also pursue a
more quantitative study of X(k). For instance, we might try to prove asymptotic formulas
for the number of k-points of bounded height on some special Zariski-open subset of X.

On the other hand, if X(k) = ∅, then we might try to account for the absence of k-rational
points. For example, the existence of embeddings X(k) ↪→ X(kv) for every completion kv of
k shows that a necessary condition for X to have a k-rational point is

(1) X(kv) 6= ∅ for all completions kv of k.
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We say that X is locally soluble whenever (1) is satisfied. Whenever checking (1) suffices to
show that X(k) 6= ∅, we say that X satisfies the Hasse principle1. Many classes of varieties,
such as quadrics, satisfy the Hasse principle.

Perhaps the first known counterexample to the Hasse principle is due to Lind and Re-
ichardt, who show that the genus 1 plane curve over Q with affine model given by 2y2 =
x4−17 is locally soluble, but lacks Q-rational points; see [Lin40,Rei42]. Failures of the Hasse
principle are often explained by the presence of cohomologically flavored obstructions, such
as the Brauer-Manin obstruction. These kinds of obstructions may also produce examples of
varieties X as above, with X(k) 6= ∅, for which the embedding X(k) ↪→ X(Ak) is not dense.

Notation. The following notation will remain in force throughout. First, k denotes a field,
k is a fixed algebraic closure of k, and ks ⊆ k is the separable closure of k in k. If k is a
global field then we write Ak for the adèle ring of k, Ωk for the set of places of k, and kv for
the completion of k at v ∈ Ωk. By a k-variety X we mean a separated scheme of finite type
over k (we will omit the reference to k when it can cause no confusion). If X and Y are
S-schemes then we write XY := X ×S Y . However, if Y = SpecA then we write XA instead
of XSpecA. A k-variety X is said to be nice if it is smooth, projective and geometrically
integral. If T is a k-scheme, then we write X(T ) for the set of T -valued points of X. If,
however, T = SpecA is affine, then we write X(A) instead of X(SpecA).

1.2. Birational invariance and a theorem of Iskovskikh. Let X be a nice k-variety.
Many properties of X(k), such as “being nonempty,” depend only on X up to birational
equivalence, as follows.

Existence of a smooth k-point. The Lang-Nishimura lemma guarantees that if X ′ 99K X
is a birational map between proper integral k-varieties then X ′ has a smooth k-point if and
only if X has a smooth k-point; see [Lan54,Nis55]. We give a short proof here due to Kollár
and Szabó [RY00, Proposition A.6].

Lemma 1.1 (Lang-Nishimura). Let k be a field, and let f : X ′ 99K X be a rational map of
k-schemes. Assume that X ′ has a smooth k-point and that X is proper. Then X(k) 6= ∅.

Proof. We use induction on n := dimX ′. The case n = 0 is clear. Let x be a smooth k-point
of X ′. Consider the blow-up BlxX

′ of X ′ at x with exceptional divisor E ∼= Pn−1
k and the

composition

BlxX
′ → X ′ 99K X.

By the valuative criterion of properness, this composition is defined outside a set of codi-
mension at least 2, so the restricting to E we obtain a rational map E 99K X. Now X(k) 6= ∅
by induction. (Note that induction is only necessary in the case where k is finite.) �

Zariski density of k-rational points. If X, X ′ are two nice birationally equivalent k-
varieties, then X(k) is Zariski dense in X if and only if X ′(k) is Zariski dense in X ′: the
key point to keep in mind is that any two nonempty open sets in the Zariski topology have
nonempty intersection.

1Many authors refer only to the Hasse principle in the context of a class S of varieties and say that S
satisfies the Hasse principle if for every X ∈ S, the implication X(kv) 6= ∅ for all v ∈ Ωk =⇒ X(k) 6= ∅
holds.
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Weak approximation. Let X be a geometrically integral variety over a global field k. We
say that X satisfies weak approximation if the diagonal embedding

X(k) ↪→
∏
v∈Ωk

X(kv)

is dense for the product of the v-adic topologies. If X is a nice k-variety then X(Ak) =∏
vX(kv), the latter considered with the product topology of the v-adic topologies; see

[Sko01, pp. 98–99]. In this case X satisfies weak approximation if the image of the natural
map X(k) ↪→ X(Ak) is dense for the adèlic topology. Note also that if X does not satisfy
the Hasse principle, then automatically X does not satisfy weak approximation.

Lemma 1.2. If X and X ′ are smooth, geometrically integral and birationally equivalent
varieties over a global field k, then X ′ satisfies weak approximation if and only if X satisfies
weak approximation.

Sketch of proof. It is enough to prove the lemma in the case X ′ = X \W , where W is a
proper closed subvariety of X, i.e., X ′ is a dense open subset of X. Then, if X satisfies weak
approximation, then clearly so does X ′. On the other hand, by the v-adic implicit function
theorem, the set X ′(kv) is dense in X(kv); see [CTCS80, Lemme 3.1.2]. Suppose that X ′

satisfies weak approximation and let (xv) ∈
∏

vX(kv) be given. Choose (yv) ∈
∏

vX
′(kv) ⊆∏

vX(kv) as close as desired to (xv) for the product topology. By hypothesis, there is a
rational point y ∈ X ′(k) whose image in

∏
vX

′(kv) is arbitrarily close to (yv); then y is also
close to (xv), and X satisfies weak approximation. �

Hasse principle. If k is a global field, and if X, X ′ are two nice birationally equivalent
k-varieties, then X satisfies the Hasse principle if and only if X ′ satisfies the Hasse principle:
this follows from two applications of the Lang-Nishimura lemma.

It is thus natural to ask the qualitative questions of §1.1 in the context of a fixed birational
class for X. In particular, we will fix the dimension of X. We will consider these questions
only for nice surfaces. In addition, we require that X be geometrically rational, i.e., X×kk is
birational to P2

k
. The reason for this last restriction is the existence of the following beautiful

classification theorem due to Iskovskikh, which describes the possible birational classes for
X.

Theorem 1.3 ([Isk79, Theorem 1]). Let k be a field, and let X be a smooth projective
geometrically rational surface over k. Then X is k-birational to either a del Pezzo surface
of degree 1 ≤ d ≤ 9 or a rational conic bundle. �

Remark 1.4. It is possible for X as in Theorem 1.3 to be k-birational to both a del Pezzo
surface and a rational conic bundle. More precisely, a rational conic bundle is birational
to a minimal del Pezzo surface if and only if d = 1, 2 or 4 and there are two distinct
representations of X as a rational conic bundle; see [Isk79, Theorems 4 and 5].

1.3. Del Pezzo surfaces. In light of Theorem 1.3, we take a moment to review the definition
and some basic properties of del Pezzo surfaces. In this section, we work over an arbitrary
field k.

We begin by recalling some basic facts and setting some notation. If X is a nice surface,
then there is an intersection pairing on the Picard group ( · , · )X : PicX × PicX → Z;
see [Kle05, Appendix B]. We omit the subscript on the pairing if no confusion can arise.
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For such an X, we identify Pic(X) with the Weil divisor class group (see [Har77, Corollary
II.6.16]); in particular, we will use additive notation for the group law on PicX. If X is
a nice k-variety, then we write KX for the class of the canonical sheaf ωX in PicX; the
anticanonical sheaf of X is ω⊗−1

X . An exceptional curve on a smooth projective k-surface X is
an irreducible curve C ⊆ Xk such that (C,C) = (KX , C) = −1. By the adjunction formula
(see [Ser88, IV.8, Proposition 5]), an exceptional curve on X has arithmetic genus 0, and
hence it is k-isomorphic to P1

k
.

Definition 1.5. A del Pezzo surface X is a nice k-surface with ample anticanonical sheaf.
The degree of X is the intersection number d := (KX , KX).

If X is a del Pezzo surface then the Riemann-Roch theorem for surfaces and Castelnuovo’s
rationality criterion show that X is geometrically rational. Moreover, Xks is isomorphic to
either P1

ks×P1
ks (in which case d = 8), or the blow-up of P2

ks at r ≤ 8 distinct closed points (in
which case d = 9−r); this is the content of Theorem 1.6 below. In the latter case, the points
must be in general position: this condition is equivalent to ampleness of the anticanonical
class on the blown-up surface; see [Dem80, Théorème 1, p. 27].

1.4. Del Pezzo surfaces are separably split. Throughout this section, k denotes a sep-
arably closed field and k a fixed algebraic closure of k. A collection of closed points in P2(k)
is said to be in general position if no 3 points lie on a line, no 6 points lie on a conic, and
no 8 points lie on a singular cubic, with one of the points at the singularity. Our goal is to
prove the following strengthening of [Man74, Theorem 24.4].

Theorem 1.6. Let X be a del Pezzo surface of degree d over k. Then either X is isomorphic
to the blow-up of P2

k at 9−d points in general position in P2(k), or d = 8 and X is isomorphic
to P1

k × P1
k.

We need two results of Coombes, as follows.

Proposition 1.7 ([Coo88, Proposition 5]). Let f : X → Y be a birational morphism of
smooth projective surfaces over k. Then f factors as

X = X0 → X1 → · · · → Xr = Y,

where each map Xi → Xi+1 is a blow-up at a closed k-point of Xi+1. �

The above proposition is well-known if we replace k with k. The main step in the proof of
Proposition 1.7 is to show that the blow-up at a closed point whose residue field is a nontrivial
purely inseparable extension of k cannot give rise to a smooth surface. Using Iskovskikh’s
classification theorem (Theorem 1.3), Coombes deduces the following proposition.

Proposition 1.8 ([Coo88, Proposition 7]). The minimal smooth projective rational surfaces
over k are P2

k and the Hirzebruch surfaces Fn := P
(
OP1k ⊕ OP1k(n)

)
, where either n = 0 or

n ≥ 2. �

Finally, we need the following lemma.

Lemma 1.9 ([Man74, Theorem 24.3(ii)]). Let X be a del Pezzo surface over an algebraically
closed field. Then every irreducible curve with negative self-intersection is exceptional.
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Proof. Let C ⊂ X be an irreducible curve with (C,C) < 0, and let pa(C) denote its arith-
metic genus. Since −KX is ample, we have (C,−KX) > 0. On the other hand, by the
adjunction formula we know that

2pa(C)− 2 = (C,C)− (C,−KX).

Since C is irreducible, we have pa(C) ≥ 0. All this forces pa(C) = 0 and (C,C) = (C,KX) =
−1, and thus C is exceptional. �

Proof of Theorem 1.6. Let f : X → Y be a birational k-morphism with Y minimal, and
write

(2) X = X0 → X1 → · · · → Xr = Y

for a factorization of f as in Proposition 1.7. By Proposition 1.8 we need only consider the
following cases:

(1) Y = P2
k. We claim that no point that is blown-up in one step of the factorization (2)

may lie on the exceptional divisor of a previous blow-up: otherwise Xk would contain
a curve with self-intersection less than −1, contradicting Lemma 1.9. Hence X is
the blow-up of P2

k at r distinct closed k-points. We conclude that d = K2
X = 9 − r,

as claimed; note that d = (KX , KX) ≥ 1 since −KX is ample, and so 0 ≤ r ≤ 8.
Suppose that 3 of these points lie on a line L. Let f−1

k
Lk denote the strict transform

of Lk for the base-extension fk : Xk → Yk. Then (f−1

k
Lk, f

−1

k
Lk) < −1, but this is

impossible by Lemma 1.9. Similarly, if 6 of the blown-up points lie on a conic Q, or
if 8 points lie on a singular cubic C with one of the points at the singularity, then
(f−1

k
Qk, f

−1

k
Qk) < −1, or (f−1

k
Ck, f

−1

k
Ck) < −1, respectively, which is not possible.

Hence the blown-up points are in general position.
(2) Y = P1

k × P1
k. If X = Y then X is a del Pezzo surface of degree 8. Otherwise, we

may contract the two nonintersecting (−1)-curves of Xr−1 and obtain a birational
morphism φ : Xr−1 → P2

k. We may use the map φ to construct a new birational
morphism X → P2

k, given by

X = X0 → X1 → · · · → Xr−1
φ−→ P2

k,

and thus we may reduce this case to the previous case.
(3) Y = Fn, n ≥ 2. There is a curve C ⊆ (Fn)k whose divisor class satisfies (C,C) < −1.

Let f−1

k
(C) denote the strict transform of C in Xk for the base-extension fk : Xk →

(Fn)k. Then (f−1

k
C, f−1

k
C) < −1, but this is impossible by Lemma 1.9. �

1.5. Further properties of del Pezzo surfaces. The basic references on the subject
are [Man74], [Dem80] and [Kol96, III.3].

1.5.1. The Picard group. Let X be a del Pezzo surface over a field k of degree d. Recall that
an exceptional curve on X is an irreducible curve C on Xk such that (C,C) = (C,KX) = −1.
Theorem 1.6 shows that exceptional curves on X are already defined over ks.

We have seen that if Xks � P1
ks × P1

ks then Xks is isomorphic to a blow-up of P2
ks at

r := 9 − d closed points {P1 . . . , Pr} in general position. It follows that the group PicXks

is isomorphic to Z10−d (see [Har77, Proposition V.3.2]); if d ≤ 7 then it is generated by the
classes of exceptional curves. Let ei be the class of an exceptional curve corresponding to Pi
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under the blow-up map, and let ` be the class of the pullback of a line in P2
ks not passing

through any of the Pi. Then {e1, . . . , er, `} is a basis for PicXks . Note that

(ei, ej) = −δij, (ei, `) = 0, (`, `) = 1,

where δij is the usual Kronecker delta function. With respect to this basis, the anticanonical
class is given by −KX = 3`−

∑
ei.

This basis also allows us to interpret the exceptional curves in terms of strict transforms
of our blow-up: for example, if C = ` − e1 − e2 as classes in PicXks , then C is the strict
transform of the line in P2 through the points P1 and P2.

The number of exceptional curves on X is finite, and is computed as follows: if C =
a`−

∑r
i=1 biei is an exceptional curve, then

a2 −
r∑
i=1

b2
i = −1.

3a−
r∑
i=1

bi = 1.

These equations are easily solved (keep in mind that a and bi are integers). The number of
exceptional curves on X as r (and hence d) varies is shown in Table 1.

d(X) 7 6 5 4 3 2 1

# of exceptional curves 3 6 10 16 27 56 240

Table 1. Number of exceptional curves on X

1.5.2. Root systems. Suppose that r = 9− d ≥ 3. The orthogonal complement K⊥X of KX in
PicXks ⊗R, equipped with the negative of the intersection form on X, is a Euclidean space.
Its group of orthogonal transformations O(K⊥X), being an intersection of a compact group
and a discrete group, is finite. The set of vectors

Rr := {v ∈ PicXks : (v,KX) = 0, (v, v) = −2}

is a root system of rank r. Using standard facts about root systems, it is not too hard to
identify Rr as r varies; see [Man74, Theorem 25.4]. An important fact for our purposes
is that the group of automorphisms of PicXks that preserve the intersection form and KX

coincides with the Weyl group W (Rr) of the root system Rr [Man74, Theorem 23.9], i.e.,
O(KX)⊥ = W (Rr).

r 3 4 5 6 7 8

Rr A1 × A2 A4 D5 E6 E7 E8

Table 2. Root systems on PicXks
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1.5.3. Galois action on the Picard group. The Galois group Gal(ks/k) acts on PicXks as
follows. For σ ∈ Gal(ks/k), let σ̃ : Spec ks → Spec ks be the corresponding morphism. Then

idX ×σ̃ : Xks → Xks

induces an automorphism (idX ×σ̃)∗ of PicXks . This gives a group homomorphism

Gal(ks/k)→ Aut(PicXks) σ 7→ (idX ×σ̃)∗.

The action of Gal(ks/k) on Pic(Xks) fixes the canonical class KX and preserves the intersec-
tion pairing; in particular, the action of Gal(ks/k) takes exceptional curves to exceptional
curves (see [Man74, Theorem 23.8]). By our discussion in §1.5.2, it follows that Gal(ks/k)
acts as a subgroup of W (Rr) on PicXks .

Let K be the smallest extension of k in ks over which all exceptional curves of X are
defined. We say that K is the splitting field of X. The natural action of Gal(ks/k) on
PicXks

∼= PicXK factors through the quotient Gal(K/k), giving a homomorphism

(3) φX : Gal(K/k)→ Aut(PicXK).

If we have equations with coefficients in K for an exceptional curve C of X, then an element
σ ∈ Gal(K/k) acts on C by applying σ to each coefficient.

The map (3) conjecturally determines much of the arithmetic of X: there is a conjecture of
Colliot-Thélène and Sansuc (first asked as a question in [CTS80], based on evidence published
in [CTCS80,CTS82]) that says that the Brauer-Manin obstruction explains all violations of
the Hasse principle for del Pezzo surfaces over a number field k. One can use φX to compute
the Brauer-Manin obstruction, so if the conjecture is true, then one can decide whether X
has a k-point.

1.5.4. Anticanonical models. For any scheme X and line sheaf L on X, we may construct
the graded ring

R(X,L ) :=
⊕
m≥0

H0(X,L ⊗m).

When L = ω⊗−1
X , we call R(X,ω⊗−1

X ) the anticanonical ring of X. If X is a del Pezzo surface
then X is isomorphic to the scheme ProjR(X,ω⊗−1

X ), because ω⊗−1
X is ample. This scheme

is known as the anticanonical model of the del Pezzo surface.
The construction of anticanonical models is reminiscent of the procedure that yields a

Weierstrass model of an elliptic curve. In fact, we can use the Riemann-Roch theorem for
surfaces (and Kodaira vanishing–which is valid even in positive characteristic for rational
surfaces) to prove the following dimension formula for a del Pezzo surface X over k of degree
d:

h0
(
X,−mKX

)
=
m(m+ 1)

2
d+ 1;

see [Kol96, Corollary III.3.2.5] or [CO99]. For example, if X has degree 1, then the anti-
canonical model for X is a smooth sextic hypersurface in Pk(1, 1, 2, 3), and we may compute
such a model, up to isomorphism, as follows:

(1) Choose a basis {x, y} for the 2-dimensional k-vector space H0
(
X,−KX

)
.

(2) The elements x2, xy, y2 of H0
(
X,−2KX

)
are linearly independent.

However, h0
(
X,−2KX

)
= 4; choose an element z to get a basis {x2, xy, y2, z} for

this k-vector space.
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(3) The elements x3, x2y, xy2, y3, xz, yz of H0
(
X,−3KX

)
are linearly independent, but

h0
(
X,−3KX

)
= 7. Choose an element w to get a basis {x3, x2y, xy2, y3, xz, yz, w}

for this k-vector space.
(4) The vector space H0

(
X,−6KX

)
is 22-dimensional, so the 23 elements

{x6, x5y, x4y2, x3y3, x2y4, xy5, y6, x4z, x3yz, x2y2z, xy3z,

y4z, x2z2, xyz2, y2z2, z3, x3w, x2yw, xy2w, y3w, xzw, yzw,w2}

must be k-linearly dependent. Let f(x, y, z, w) = 0 be a linear dependence relation
among these elements. Then an anticanonical model of X is Proj k[x, y, z, w]/(f),
where x, y, z, w are variables with weights 1, 1, 2 and 3 respectively. This way X
may be described as the (smooth) sextic hypersurface V (f) in Pk(1, 1, 2, 3).

For more details on this construction, see [CO99, pp.1199–1201].

Remark 1.10. If k is a field of characteristic not equal to 2 or 3, then in step (4) above we
may complete the square with respect to the variable w and the cube with respect to the
variable z to obtain an equation f(x, y, z, w) = 0 involving only the monomials

{x6, x5y, x4y2, x3y3, x2y4, xy5, y6, x4z, x3yz, x2y2z, xy3z, y4z, z3, w2}.

Moreover, we may also rescale the variables so that the coefficients of w2 and z3 are ±1.

Remark 1.11. If X has degree d ≥ 3, then the anticanonical model recovers the usual
description of X as a smooth degree d surface in Pdk. In particular, when d = 3 we get a
smooth cubic surface in P3

k. If X has degree 2 then the anticanonical model is a smooth
quartic hypersurface in the weighted projective space Pk(1, 1, 1, 2); such a surface can then
be thought of as a double cover of a P2

k ramified along a quartic curve.

Remark 1.12. If we write a del Pezzo surface X of degree 1 over a field k as the smooth
sextic hypersurface V (f(x, y, z, w)) in Pk(1, 1, 2, 3), then {x, y} is a basis for H0

(
X,−KX

)
.

In particular, |−KX | has a unique base point: [0 : 0 : 1 : 1].

2. Lecture 2: Arithmetic of del Pezzo surfaces of degree at least 5

The goal for this lecture is to prove the following theorem.

Theorem 2.1. Let X be a del Pezzo surface of degree d ≥ 5. If X(k) 6= ∅, then X is
k-birational to P2

k. This hypothesis is automatically satisfied if d = 5 or 7.
In particular, if k is a global field then X satisfies weak approximation. In addition,

X(k) 6= ∅ provided X(kv) 6= ∅ for all v ∈ Ωk (i.e., del Pezzo surfaces of degree at least 5
satisfy the Hasse principle).

We will prove this theorem by a case-by-case analysis on the degree of X, making attri-
butions as we go along. Our exposition is influenced by [CT99, §4].

2.1. Case 1: d(X) = 9. By Theorem 1.6, Xk is isomorphic to P2
k
, i.e., Xk is a form of the

projective plane. It is a classical theorem of Châtelet that such a surface is k-isomorphic
to P2

k if and only if X(k) 6= ∅. We will prove this result more generally for Severi-Brauer
varieties.

8



Definition 2.2. A Severi-Brauer variety is a projective scheme X over a field k that becomes
isomorphic to some n-dimensional projective space upon passage to an algebraic closure k
of k, i.e., Xk

∼= Pn
k

for some n.

Theorem 2.3 (Châtelet). Let X be a Severi-Brauer variety of dimension n over a field k.
The following are equivalent:

(1) X is k-isomorphic to Pnk ;
(2) X(k) 6= ∅.

Proof. The proof we give here is due to Endre Szabó; we follow the exposition in [GS06].
The implication (1) =⇒ (2) is clear. We claim that if X(k) 6= ∅ then X contains a twisted
linear subvariety D of codimension 1. Let π : Y → X be the blow-up of X at a k-rational
point P . The variety Yk is isomorphic to the blow-up of Pn

k
at a closed point and we can

think of it as a subvariety of Pn
k
× Pn−1

k
. Let ψk : Yk → Pn−1

k
be the projection onto the

second factor. Choose a hyperplane L on the exceptional divisor E ∼= Pn−1
k of the blow-up.

The subvariety Dk := πk
(
ψ−1

k
(ψk(Lk))

)
of Xk is a hyperplane in Pn

k
.

Choose an ample divisor A of X, of degree d over k. The linear system |π∗A−dE| defines
a k-rational map φ : Y 99K PNk . Since (π∗A−dE)k has degree 0 on the fibers of ψk and degree
d on Ek, the map φk factors as ψk followed by the d-uple embedding. In particular, φ is
defined everywhere. The subvariety D := π

(
φ−1(φ(L))

)
of X is defined over k and becomes

Dk after base extension to k.
The linear system |D| gives a rational map φD : X 99K Pn1

k . Over k, D becomes a hy-
perplane and thus (φD)k is an isomorphism with Pn

k
. This shows that n1 = n, and φ is an

everywhere-defined isomorphism. �

Over a global field, forms of Pnk satisfy the Hasse principle. This also follows from work of
Châtelet [Châ44].

Theorem 2.4 (Châtelet). Severi-Brauer varieties over a global field satisfy the Hasse prin-
ciple.

Idea of the proof. Let SBn(k) be the pointed set of isomorphism classes of Severi-Brauer
varieties of dimension n over k (the base point is the class of Pnk). There is a base-point
preserving bijection

SBn(k)←→ H1
(

Gal(ks/k),PGLn+1(ks)
)
;

see [GS06, Theorem 5.2.1]. If K is a finite Galois extension of k, then there is a base-point
preserving bijection between k-isomorphism classes of central simple algebras of degree n
split by K and H1

(
Gal(K/k),PGLn+1(K)

)
; see [GS06, Theorem 2.4.3]. Thus, to a Severi-

Brauer variety X over k, we may naturally associate a class of Br(k) in a unique way, and
this class is trivial if and only if X ∼= Pnk , i.e., if and only if X(k) 6= ∅, by Theorem 2.3. The
theorem now follows from the fact that the map

Br(k)→
⊕
v∈Ωk

Br(kv), A 7→ (A⊗k kv)

is an injection [NSW08, Theorem 8.1.17]. �
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2.2. Case 2: d(X) = 8. By Theorem 1.6, Xks is isomorphic to either a blow-up of P2
ks at

a point or to P1
ks × P1

ks . We deal with these cases separately. In the former case, there is
exactly one exceptional curve on X, and Gal(ks/k) must fix it (see 1.5.3). Blowing down
this curve we obtain a del Pezzo surface of degree 9 with a k-point, so by Theorem 2.3 we
conclude that X is k-birational to P2

k. In particular, X(k) 6= ∅, so these surfaces trivially
satisfy the Hasse principle.

Suppose now that Xks is isomorphic to P1
ks × P1

ks . Then PicXks
∼= ZL1 ⊕ ZL2, where L1

and L2 give the two rulings of P1
ks × P1

ks . Note that KX = −2(L1 + L2), and hence L1 + L2

is stable under the action of Gal(ks/k). If X(k) 6= ∅, or if k is a global field and X(kv) 6= ∅
for all v ∈ Ωk, then the inclusion

PicX →
(

PicXks
)Gal(ks/k)

is an isomorphism (see §3.4). In either case, the class of L1 + L2 may be represented over
k by some divisor D. The linear system |D| gives an embedding φD : X → P3

k of X as a
quadric surface, defined over k. If P ∈ X(k), then composing φD with projection away from
φD(P ) we obtain a k-birational map X 99K P2

k.
If k is a global field and X(kv) 6= ∅ for all v ∈ Ωk, then (φD)kv(Xkv) is a quadric in P3

kv
,

and φD(X)(kv) 6= ∅ for all v ∈ Ωk. Quadrics over global fields satisfy the Hasse principle, so
φD(X)(k) 6= ∅ and hence X(k) 6= ∅.

2.3. Case 3: d(X) = 7. By Theorem 1.6, Xks is isomorphic to a blow-up of P2
ks at two

points. There are only three exceptional curves on X, and their configuration is quite
simple. Label these curves e1, e2 and e3; without loss of generality we have

(e1, e2) = (e2, e3) = 1 and (e1, e3) = 0.

Since the action of Gal(ks/k) on PicXks respects the intersection pairing, it follows that e2

is defined over k. Contracting it we obtain a del Pezzo surface of degree 8 with a point, and
hence X(k) 6= ∅ by the Lang-Nishimura lemma. In particular, del Pezzo surfaces of degree
7 trivially satisfy the Hasse principle. It follows from our work above that X is k-birational
to P2

k.

2.4. Case 4: d(X) = 6. By Theorem 1.6, Xks is isomorphic to a blow-up of P2
ks at three

non-colinear points. If we have a point P ∈ X(k) that lies on at least one exceptional curve
then one can show that X is not minimal and conclude using our work above. If P is not
on any exceptional curve, then we may blow-up P to obtain a del Pezzo surface of degree
5. On this surface, there are three exceptional curves that meet the exceptional divisor of
the blow-up, are pairwise skew, and form a Gal(ks/k)-set. Contracting them we obtain a
del Pezzo surface of degree 8 that contains a rational point. Hence X is k-birational to P2

k.
The exceptional curves of Xks form a “hexagon.” Let e1, . . . , e6 be the exceptional curves

of X, numbered to correspond clockwise to the vertices of the hexagon. Thus {e1, e3, e5}
and {e2, e4, e6} are triplets of curves that do not pairwise intersect, and {e1, e4}, {e2, e5} and
{e3, e6} are couples of curves whose vertices in the hexagon are “as far apart as possible.”
Since the action of Gal(ks/k) respects the intersection form, it induces an action on the sets

T :=
{
{e1, e3, e5}, {e2, e4, e6}

}
and D :=

{
{e1, e4}, {e2, e5}, {e3, e6}

}
.

If any element of T or D is fixed by the action of Gal(ks/k), then it is defined over k. Hence
there exist

10



• an element of T defined over a field extension K of k with [K : k] | 2.
• an element of D defined over a field extension L of k with [L : k] | 3.

On XK we may contract the curves in the fixed element of T to obtain a del Pezzo surface
of degree 9. On XL we may contract the curves in the fixed element of D to obtain a del
Pezzo surface of degree 8 that is a form of P1

L × P1
L.

If k is a global field and X(kv) 6= ∅ for all v ∈ Ωv, then both XL and XK also have points
everywhere locally. Since del Pezzo surfaces of degree 8 and 9 satisfy the Hasse principle, it
follows that XK is K-birational to P2

K and XL is L-birational to P2
L. This means that there is

a closed point P1 of X consisting of a pair of K-points that are conjugate, as well as a closed
point P2 of X consisting of three L-points that are conjugate. Choose a four-dimensional
linear subspace L of P4

k that passes through P1 and P2. By Bezout’s theorem, Xk∩Lk consists
of 6 points, counted with multiplicity (because X has degree 6—this assumes the intersection
is the right dimension; when the intersection contains a curve one has to do a little more
work). The points P1 and P2 account for 5 of the geometric points in Xk∩Lk. The remaining
point must be defined over k (how else would Galois act on it?). Thus del Pezzo surfaces of
degree 6 satisfy the Hasse principle (this proof is essentially due to Colliot-Thélène [CT72]).

2.5. Case 5: d(X) = 5. We shall assume first that X(k) 6= ∅. If X contains a k-point P
that does not lie on any exceptional curve, then the blow-up of X at P is a del Pezzo surface
Y of degree 4. Let e be the exceptional curve of Y corresponding to the blown-up point P .
Examining the graph of intersections of exceptional curves on Y , we see that there are five
curves that do not intersect e, and that are pairwise skew to each other. These five curves
form an invariant set under the action of Gal(ks/k) because e is defined over k. Contracting
this set we obtain a del Pezzo surface of degree 9 with k-point (since X(k) 6= ∅), so by
Theorem 2.3 we conclude that X is k-birational to P2

k. An easy case-by-case analysis shows
that if P lies on at least one exceptional curve, then it is possible to contract at least one
exceptional curve over k and thus reduce to previous cases to conclude that X is k-birational
to P2

k.

Theorem 2.5 (Enriques, Swinnerton-Dyer, Skorobogatov, Shepherd-Barron, Kollár). Let
X be a del Pezzo surface of degree 5 over a field k. Then X(k) 6= ∅. In particular, if k is a
global field, then del Pezzo surfaces of degree 5 trivially satisfy the Hasse principle.

Sketch of proof. We follow Swinnerton-Dyer’s approach [SD72]; other proofs can be found
in [Enr97,Sko93,Kol96,SB92,Has09]. Recall that the anticanonical model of X is a quintic
surface in P5

k (i.e., the linear system |−KX | embeds X as a quintic in P5
k; see §1.5.4). Under

this embedding, X is cut out by 5 quadrics, defined over k. It suffices to verify this claim
after a base-extension of the field. Over ks, the surface Xks is isomorphic to the blow-up of
P2
ks at four points, no three of which are colinear. By a projective transformation (defined

over ks), we may assume that these points are

[1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1] and [1 : 1 : 1].

It is now not difficult to check that the ideal I(Xks) of Xks ⊆ P5
ks is generated by 5 quadrics.

Let Q be a general element of I(Xks)2, let Π1 be a general plane lying in Q, and let L be a
general threefold through Π1 of X. Then

Q · L = Π1 + Π2,
11



where Π2 is another plane residual to Π1. One can show that

X · L = (X · Π1)Q + (X · Π1)Q,

and that, after possibly interchanging Π1 and Π2,

deg(X · Π1)Q = 2 and deg(X · Π2)Q = 3

These two equalities can now be used to show that Πi may be chosen in such a way that it
is defined over an extension K of k with [K : k] = 2n with 0 ≤ n ≤ 3. Suppose for simplicity
that n = 1. Let P be a K-point of Π1 and let P c be its conjugate over k. Let H ⊂ P5

k be
any hyperplane defined over K. Then Hks · Xks is a curve C of genus one defined over K
containing the zero-cycle P + P c, and a zero-cycle of degree 5 obtained by intersecting X
with any 3-dimensional linear subspace of H. Hence C contains a zero-cycle of degree 1 and
thus a k-rational point. If n > 1, we just repeat this procedure a total of n times. �

Remark 2.6. Here is an alternative strategy [Has09, Exercise 3.1.4]: show that if Q1, Q2, Q3

are general elements of I(X)2 then

V (Q1, Q2, Q3) = X ∪W,

where Wks is isomorphic to the blow-up of P2
ks at a point. By our work in §2.2, the exceptional

divisor of Wks is defined over k. Now show that this exceptional divisor intersects X in one
point.

Proof of Theorem 2.1. At this point, it only remains to note that since X is k-birational to
P2
k, it must satisfy weak approximation, by Lemma 1.2. �

3. Lecture 3: Counterexamples in small degree

We have seen that del Pezzo surfaces of degree at least 5 over global fields satisfy both the
Hasse principle and weak approximation. This is no longer the case for surfaces of lower de-
gree. Of course, a counterexample to the Hasse principle immediately gives a counterexample
to weak approximation. However, in degrees 2, 3 or 4, there exist examples of surfaces with a
Zariski dense set of points for which weak approximation fails. Curiously, del Pezzo surfaces
of degree 1 always have a k-rational point: the unique base-point of the anticanonical linear
system (see Remark 1.12). These surfaces, however, need not satisfy weak approximation.

In Table 3 we have compiled a list of references for the earliest recorded counterexamples
to the Hasse principle and weak approximation in low degrees. A little care must be taken
with counterexamples to weak approximation: for example, by Lemma 1.2, if X is a coun-
terexample to weak approximation and X(k) 6= ∅, then the blow-up of X at a k-point is
also a counterexample to weak approximation. Thus, when dealing with counterexamples
to weak approximation on del Pezzo surfaces, it is important to make sure that the surfaces
are k-minimal: the surface should not have a Galois-stable set of pairwise skew exceptional
curves.

3.1. The Brauer-Manin set I. Let X be a nice variety over a global field k. Since X
is proper, we have

∏
vX(kv) = X(Ak). In [Man71], Manin used the Brauer group of the

variety to construct an intermediate “obstruction set” between X(k) and X(Ak):

X(k) ⊆ X(Ak)
Br ⊆ X(Ak).

12



Phenomenon d ≥ 5 d = 4 d = 3 d = 2 d = 1

Hasse principle X [BSD75] [SD62] [KT04] X
Weak approximation X [CTS77] [SD62] [KT08] [VA08]

Table 3. Arithmetic phenomena on del Pezzo surfaces over global fields. A
check mark (X) indicates that the relevant arithmetic phenomenon holds for
the indicated class of surfaces. An entry with a reference indicates the existence
of a counterexample to the arithmetic phenomenon which can be found in the
paper cited.

In fact, the set X(Ak)
Br already contains the closure of X(k) for the adelic topology and

thus may be used to explain the failure of both the Hasse principle and weak approximation
on many classes of varieties.

Definition 3.1. Let X be a nice k-variety, and assume that X(Ak) 6= ∅. We say that
X is a counter-example to the Hasse principle explained by the Brauer-Manin obstruction if
X(Ak)

Br = ∅. We say that X is a counter-example to the weak approximation explained by
the Brauer-Manin obstruction if X(Ak) \X(Ak)

Br 6= ∅.

3.2. Brauer groups of schemes. Recall that the Brauer group of a field k can be defined
in two different ways: as the set of similarity classes of central simple algebras over k, or as
the Galois cohomology group H2

(
Gal(ks/k), ks∗

)
. These two points of view can be naturally

identified, and each has its own advantages, depending on context. Both definitions have
natural generalizations to schemes, but these generalizations need no longer be naturally
isomorphic.

Definition 3.2. An Azumaya algebra on a scheme X is an OX-algebra A that is coherent
and locally free as an OX-module, such that the fiber A(x) := A ⊗OX,x

k(x) is a central
simple algebra over the residue field k(x) for each x ∈ X.

Two Azumaya algebras A and B on X are similar if there exist nonzero locally free coherent
OX-modules E and F such that

A⊗OX
EndOX

(E) ∼= B ⊗OX
EndOX

(F).

Definition 3.3. The Azumaya Brauer group of a scheme X is the set of similarity classes
of Azumaya algebras on X, with multiplication induced by tensor product of sheaves. We
denote this group by BrAz X.

The inverse of [A] ∈ BrAz X is the class [Aop] of the opposite algebra of A; the identity
element is [OX ] (see [Gro68, p. 47]).

Definition 3.4. The Brauer group of a scheme X is BrX := H2
ét

(
X,Gm

)
.

Remark 3.5. Note that if k is a field, then BrAz Spec k = Br Spec k = Br k, the usual Brauer
group of a field.

For any scheme X there is a natural inclusion

BrAz X ↪→ BrX;
13



see [Mil80, Theorem IV.2.5]. The following result of Gabber, a proof of which can be found
in [dJ], determines the image of this injection for a scheme with some kind of polarization.

Theorem 3.6 (Gabber, de Jong). If X is a scheme quasi-projective over a noetherian ring,
then the natural map BrAz X ↪→ BrX induces an isomorphism

BrAz X
∼−→ (BrX)tors. �

If X is an integral scheme with function field k(X), then the inclusion Spec k(X) → X
gives rise to a map BrX → Br k(X) via functoriality of étale cohomology. If further X is
regular and quasi-compact then this induced map is injective; see [Mil80, Example III.2.22].
On the other hand, the group Br k(X) is torsion, because it is a Galois cohomology group.
These two facts imply the following corollary of Theorem 3.6.

Corollary 3.7. Let X be a regular quasiprojective variety over a field. Then

BrAzX ∼= BrX. �

This corollary allows us to think of elements in “the” Brauer group of a nice k-variety either
as Azumaya algebras or as étale cohomology classes. Each point of view has its advantages:
the former is useful for computations, while the latter allows us to use theorems from étale
cohomology to deduce things about the structure of the Brauer group.

3.3. The Brauer-Manin set II. Let X be a nice variety over a global field k. For each
A ∈ BrX and each field extension K/k there is a specialization map

evA : X(K)→ BrK, x 7→ Ax ⊗OX,x
K.

These specialization maps may be put together to construct a pairing

(4) φ : BrX ×X(Ak)→ Q/Z, (A, (xv)) 7→
∑
v∈Ωk

invv(evA(xv)),

where invv : Br kv → Q/Z is the usual invariant map from local class field theory. The sum
in (4) is in fact finite because for (xv) ∈ X(Ak) we have evA(xv) = 0 ∈ Br kv for all but
finitely many v; see [Sko01, p. 101]. For A ∈ BrX we obtain a commutative diagram

(5) X(k) //

evA

��

X(Ak)

evA
��

φ(A,−)

((
0 // Br k //

⊕
v Br kv

∑
v invv // Q/Z // 0

where the bottom row is the usual exact sequence from class field theory.
Manin’s observation is that the kernel of the map φ(A,−) contains X(k) (because the

bottom row of the above commutative diagram is a complex), and thus an element A ∈ BrX
can be used to “carve out” a subset of X(Ak) that contains X(k):

X(Ak)
A :=

{
(xv) ∈ X(Ak) : φ(A, (xv)) = 0

}
.

Moreover, if Q/Z is given the discrete topology, then the map φ(A,−) : X(Ak) → Q/Z
is continuous, so X(Ak)

A is a closed subset of X(Ak); see [Har04, §3.1]. This shows that

X(k) ⊆ X(Ak)
A.
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Definition 3.8. Let X be a nice variety over a global field k. We call

X(Ak)
Br :=

⋂
A∈BrX

X(A)A

the Brauer-Manin set of X.

The structure map X → Spec k gives rise to a map Br k → BrX, by functoriality. The
group Br0X := im (Br k → BrX) is known as the subgroup of constant algebras. The ex-
actness of the bottom row of (5) implies that if A ∈ Br0X then X(Ak)

A = X(Ak). This
shows that to compute

⋂
A∈BrX X(Ak)

A it is enough to calculate the intersection over a set
of representatives for the group BrX/Br0X.

3.4. The Hochschild-Serre spectral sequence in étale cohomology. Let X be a nice
locally soluble variety over a global field k. If BrXks = 0, then the Hochschild-Serre spectral
sequence in étale cohomology provides a tool for computing the group BrX/Br k.

Let K be a finite Galois extension of k, with Galois group G. The Hochschild-Serre
spectral sequence

Ep,q
2 := Hp

(
G,Hq

ét

(
XK ,Gm

))
=⇒ Hp+q

ét

(
X,Gm

)
=: Lp+q

gives rise to the usual “low-degree” long exact sequence

0→ E1,0
2 → L1 → E0,1

2 → E2,0
2 → ker

(
L2 → E0,2

2

)
→ E1,1

2 → E3,0
2

which in our case is

0→ PicX → (PicXK)G → H2
(
G,K∗

)
→ ker(BrX → BrXK)

→ H1
(
G,PicXK

)
→ H3

(
G,K∗

)
.

(6)

Taking the direct limit over all finite Galois extensions of k gives the exact sequence

0→ PicX → (PicXks)
Gal(ks/k) → Br k → ker(BrX → BrXks)

→ H1
(

Gal(ks/k),PicXks
)
→ H3

(
Gal(ks/k), ks∗

)
.

(7)

Furthermore, if k is a global field, then H3
(

Gal(ks/k), ks∗
)

= 0; this fact is due to Tate—
see [NSW08, 8.3.11(iv), 8.3.17].

For each v ∈ Ωk, local solubility of X gives a morphism Spec kv → X that splits the base
extension πv : Xkv → Spec kv of the structure map of X. Thus, by functoriality of the Brauer
group, the natural maps π∗v : Br kv → BrXkv split for every v ∈ Ωk. The exactness of the
bottom row of (5) then shows that the natural map Br k → BrX coming from the structure
morphism of X is injective. Moreover, if X is a del Pezzo surface, then BrXks = 0 and
thus (7) gives rise to the short exact sequence

0→ Br k → BrX → H1
(

Gal(ks/k),PicXks
)
→ 0,

and hence to an isomorphism

(8) BrX/Br k
∼−→ H1

(
Gal(ks/k),PicXks

)
.

If K is a splitting field for X, i.e., a field extension K of k where a set of generators for
PicXks have representatives defined over K, then the inflation map

H1
(

Gal(K/k),PicXK

)
→ H1

(
Gal(ks/k),PicXks

)
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is an isomorphism, because the cokernel maps into the first cohomology group of a free
Z-module with trivial action by a profinite group, which is trivial. Hence

(9) BrX/Br k ∼= H1
(

Gal(K/k),PicXK

)
.

Finally, we note that since X(Ak) 6= ∅, if H is a subgroup of G, then by (6) and the
injectivity of the map Br k → BrX, we know that

PicXKH
∼−→ (PicXK)H ,

where KH is the fixed field of K by H.
In summary, one way of constructing Brauer-Manin obstructions on del Pezzo surfaces of

small degree begins by computing the group H1
(

Gal(K/k),PicXK

)
on “reasonable” sur-

faces, and then tries to invert the isomorphism (9). Many authors have pursued this set
of ideas, and not just for del Pezzo surfaces (see, for example, [Man74, CTCS80, CTSSD87,
CTKS87,SD93,SD99,Bri02, KT04,Bri06,BBFL07,Cor07,KT08, Log08, VA08], to name but
a few references).

3.5. A counterexample to weak approximation in degree 1. We will use the remain-
der of this lecture to go through the details of a counterexample to weak approximation. We
will deal with del Pezzo surfaces of degree 1 for two reasons: (1) we were explicitly asked
to talk a little bit about our research in these lectures, and (2) the example shows that del
Pezzo surfaces of degree 1 are not as scary as they may appear at first, if one is willing to
use a computer to work out a little bit of algebra that is beyond what is reasonable to do
with pencil and paper.

Let us quickly review what we know about del Pezzo surfaces of degree 1. First, recall their
anticanonical model is a smooth sextic hypersurface in Pk(1, 1, 2, 3) := Proj(k[x, y, z, w]),
e.g.,

w2 = z3 + Ax6 +By6, A,B ∈ k∗.
Conversely, any smooth sextic X in Pk(1, 1, 2, 3) is a del Pezzo surface of degree 1. The
surfaceXks is isomorphic to the blow-up of P2

ks at 8 points in general position, so in particular,
PicXks

∼= Z9.
Fix a primitive sixth root of unity ζ in Q. Our goal is to prove the following theorem.

Theorem 3.9 ([VA08]). Let X be the del Pezzo surface of degree 1 over k = Q(ζ) given by

w2 = z3 + 16x6 + 16y6

in Pk(1, 1, 2, 3). Then X is k-minimal and there is a Brauer-Manin obstruction to weak ap-
proximation on X. Moreover, the obstruction arises from a cyclic algebra class in BrX/Br k.

In order to compute the Galois cohomology group H1
(

Gal(ks/k),PicXks
)
, we need an

explicit description of the action of Gal(ks/k) on PicXks . Recall that PicXks is generated
by the exceptional curves of X. The following theorem, which can be deduced from work of
Shioda on Mordell-Weil lattices (see [Shi90, Theorem 10.10]—we also give a different proof
in [VA08, Theorem 1.2]), helps us compute the exceptional curves and a splitting field for a
del Pezzo surface of degree 1.

Theorem 3.10. Let X be a del Pezzo surface of degree 1 over a field k, given as a smooth
sextic hypersurface V (f(x, y, z, w)) in Pk(1, 1, 2, 3). Let

Γ = V (z −Q(x, y), w − C(x, y)) ⊆ Pks(1, 1, 2, 3),
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where Q(x, y) and C(x, y) are homogenous forms of degrees 2 and 3, respectively, in ks[x, y].
If Γ is a divisor on Xks, then it is an exceptional curve of X. Conversely, every exceptional
curve on X is a divisor of this form. �

We explain how to use this theorem to compute the exceptional curves on the del Pezzo
surface X of Theorem 3.9. Let a, b, c, r, s, t and u be indeterminates, and let

Q(x, y) = ax2 + bxy + cy2,

C(x, y) = rx3 + sx2y + txy2 + uy3.

The identity C(x, y)2 = Q(x, y)3 + 16x6 + 16y6 gives

a3 − r2 + 16 = 0,

3a2b− 2rs = 0,

3a2c+ 3ab2 − 2rt− s2 = 0,

6abc+ b3 − 2ru− 2st = 0,

3ac2 + 3b2c− 2su− t2 = 0,

3bc2 − 2tu = 0,

c3 − u2 + 16 = 0.

We can use Gröbner bases to solve this system of equations. We get 240 solutions, one
for each exceptional curve of the surface. The action of Gal(ks/k) can be read off from
the coefficients of the equations of the exceptional curves. Let s = 3

√
2, and consider the

exceptional curves on X given by

E1 = V (z + 2sx2, w − 4y3),

E2 = V (z − (−ζ + 1)2sx2, w + 4y3),

E3 = V (z − 2ζsx2 + 4y2, w − 4s(ζ − 2)x2y − 4(−2ζ + 1)y3),

E4 = V (z + 4ζsx2 − 2s2(2ζ − 1)xy − 4(−ζ + 1)y2,

w − 12x3 − 8s(−ζ − 1)x2y − 12ζs2xy2 − 4(−2ζ + 1)y3),

E5 = V (z + 4ζsx2 − 2s2(ζ − 2)xy − 4ζy2

w + 12x3 − 8s(2ζ − 1)x2y − 12s2xy2 − 4(−2ζ + 1)y3),

E6 = V (z − 2s(−s2ζ + s2 − 2s+ 2ζ)x2 − 2s(2s2ζ − 2s2 + 3s− 4ζ)xy − 2s(−s2ζ + s2 − 2s+ 2ζ)y2,

w − 4(2s2ζ − 4s2 + 2sζ + 2s− 6ζ + 3)x3 − 4(−5s2ζ + 10s2 − 6sζ − 6s+ 16ζ − 8)x2y

− 4(5s2ζ − 10s2 + 6sζ + 6s− 16ζ + 8)xy2 − 4(−2s2ζ + 4s2 − 2sζ − 2s+ 6ζ − 3)y3),

E7 = V (z − 2s(−s2 − 2sζ + 2s+ 2ζ)x2 − 2s(−2s2ζ + 3s+ 4ζ − 4)xy − 2s(−s2ζ + s2 + 2sζ − 2)y2,

w − 4(2s2ζ + 2s2 + 2sζ − 4s− 6ζ + 3)x3 − 4(10s2ζ − 5s2 − 6sζ − 6s− 8ζ + 16)x2y

− 4(5s2ζ − 10s2 − 12sζ + 6s+ 8ζ + 8)xy2 − 4(−2s2ζ − 2s2 − 2sζ + 4s+ 6ζ − 3)y3),

E8 = V (z − 2s(s2ζ + 2sζ + 2ζ)x2 − 2s(2s2 + 3s+ 4)xy − 2s(−s2ζ + s2 − 2sζ + 2s− 2ζ + 2)y2,

w − 4(−4s2ζ + 2s2 − 4sζ + 2s− 6ζ + 3)x3 − 4(−5s2ζ − 5s2 − 6sζ − 6s− 8ζ − 8)x2y

− 4(5s2ζ − 10s2 + 6sζ − 12s+ 8ζ − 16)xy2 − 4(4s2ζ − 2s2 + 4sζ − 2s+ 6ζ − 3)y3),
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as well as the exceptional curve

E9 = V (z − 2ζ3s
2xy, w − 4x3 + 4y3).

Then

PicXks = PicXK
∼=

(
8⊕
i=1

Z[Ei]

)
⊕ Z[H] = Z9,

where H = E1 +E2 +E9. The exceptional curves of X are defined over K := k( 3
√

2). Let ρ
be a generator for the cyclic group Gal(K/k).

To invert the isomorphism (8), we will use the following diagram, whose individual maps
we now explain:

(10) BrX/Br k
∼ //

_�

��

H1
(

Gal(ks/k),PicXks
)

Br k(X)/Br k H1
(

Gal(K/k),PicXK

)inf ∼
OO

∼
��

Brcyc(X,K)
?�

OO

kerNK/k/ im ∆
ψ

∼
oo

First, the map BrX → Br k(X) is obtained by functoriality from the inclusion of the
generic point Spec k(X)→ X (see §3.2). Since X is nice and X(Ak) 6= ∅ (because X(k) 6= ∅),
this map induces an injection BrX/Br k → Br k(X)/Br k.

Second, we have maps

NK/k : PicXK → PicX ∆: PicXK → PicX

[D] 7→ [D + ρD + ρ2D] [D] 7→ [D − ρD]

and the isomorphism

H1
(

Gal(K/k),PicXK

) ∼= kerNK/k/ im ∆

comes from Tate cohomology, since K is a cyclic extension of k.
To define the group Brcyc(X,K), we first need to recall the notion of a cyclic algebra. If

L/k is a finite cyclic extension of fields of degree n, and if ρ is a generator for Gal(L/k), then
we let L[x]ρ be the “twisted” polynomial ring, where `x = xρ` for all ` ∈ L. Given b ∈ k∗,
we write (L/k, b) for the central simple k-algebra L[x]σ/(x

n − b). Let f ∈ k(X)∗; since X is
geometrically integral, we have Gal(k(XL)/k(X)) ∼= Gal(L/k), and hence we write (L/k, f)
instead of (k(XL)/k(X), f) for the cyclic algebra in Br k(X) given by f .

We now define the group

Brcyc(X,K) :=

{
classes [(K/k, f)] in the image of the

map BrX/Br k → Br k(X)/Br k

}
.

The map ψ in (10) is defined by

ψ : kerNK/k/ im ∆→ Brcyc(X,K) [D] 7→ [(K/k, f)],

where f ∈ k(X)∗ is any function such that NK/k(D) = (f). This map is a group isomorphism;
see [VA08, Theorem 3.3].
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With our explicit generators for PicKK in hand, we use Magma [BCP97] to compute

kerNK/k/ im ∆ ∼= (Z/3Z)4.

The classes

h1 = [E2 + 2E8 −H], h2 = [E5 + 2E8 −H],

h3 = [E7 + 2E8 −H], h4 = [3E8 −H]

of PicXK give a set of generators for this group.
Consider the divisor class h1 − h2 = [E2 − E5] ∈ PicXK . It gives rise to a cyclic algebra

A := (K/k, f) ∈ Brcyc(X,K), where f ∈ k(X)∗ is any function such that

NK/k(E2 − E5) = (f),

To wit, f is a function with zeroes along

E2 + ρE2 + ρ2E2

and poles along

E5 + ρE5 + ρ2E5.

Using the explicit equations for E2 and E5 we find that

f :=
w + 4y3

w + (2ζ + 2)zy + (−8ζ + 4)y3 + 12x3

does the job.
Recall that X is given by w2 = z3 + 16x6 + 16y6. Note that

P1 = [1 : 0 : 0 : 4] and P2 = [0 : 1 : 0 : 4]

are in X(k). Let p be the unique prime above 3 in k. We compute

invp(A (P1)) = 0 and invp(A (P2)) = 1/3.

Let P ∈ X(Ak) be the point that is equal to P1 at all places except p, and is P2 at p. Then∑
v∈Ωk

invv(A (Pv)) = 1/3,

so P ∈ X(Ak) \X(Ak)
Br and X is a counterexample to weak approximation.
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Juillet 1979, Sijthoff & Noordhoff, Alphen aan den Rijn, 1980, pp. 223–237. ↑1.5.3

[CTS82] , Sur le principe de Hasse et l’approximation faible, et sur une hypothèse de Schinzel,
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