July 2017 August 2017 September 2017 Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa 1 1 2 3 4 5 1 2 2 3 4 5 6 7 8 6 7 8 9 10 11 12 3 4 5 6 7 8 9 9 10 11 12 13 14 15 13 14 15 16 17 18 19 10 11 12 13 14 15 16 16 17 18 19 20 21 22 20 21 22 23 24 25 26 17 18 19 20 21 22 23 23 24 25 26 27 28 29 27 28 29 30 31 24 25 26 27 28 29 30 30 31 |

12:00 pm Wednesday, September 6, 2017 Spectral Theory Brown Bag Seminar: Spectral Theory of Orthogonal Polynomials on Cantor Setsby Gökalp Alpan (Rice University) in HBH 427- Szegő class and isospectral torus are two central notions in studying orthogonal polynomials on a finite gap set. The Szegő condition can be characterized in terms of asymptotics of Widom factors. A Jacobi operator in the isospectral torus on a finite gap set is almost periodic and regular in the sense of Stahl-Totik. In view of some new results and conjectures, we discuss the possibility to generalize these two notions to the case where the set is an arbitrary non-polar compact subset of the real line.
Submitted by damanik@rice.edu |