4:00 pm Tuesday, January 10, 2012
Special Colloquium: Okounkov bodies: from algebraic to convex geometry
by
David Anderson (University of Washington) in HB 227
Building on earlier work of Okounkov, in 2008 Kaveh, Khovanskii, Lazarsfeld, and Mustata showed how to construct a convex body in n-dimensional Euclidean space naturally associated to a line bundle on an n-dimensional algebraic variety, in such a way that the convex geometry of this body reflects algebro-geometric properties of the line bundle. This construction generalizes a well-understood correspondence between toric varieties and polytopes: when one starts with a toric variety and an equivariant line bundle, the associated convex body is the polytope arising from the yoga of toric geometry. After describing the history and construction of these so-called "Okounkov bodies" from an elementary point of view, I will explain how the toric correspondence can be made tighter: under the right conditions, the Okounkov body is a polytope, and the variety in question deforms to a toric variety with the same Okounkov body. The toric correspondence provides a remarkably useful bridge between several branches of mathematics, and we will see connections between geometry, algebra, combinatorics, and representation theory. Host Department: Rice University-Mathematics Submitted by damanik@rice.edu |