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1. Preliminaries

Definition 1.1. The Grothendieck ring of varieties, K0(Vark) is the free abelian group on varieties over k,

modulo the relation that for any closed immersion Y X we have

[X] = [Y ] + [X\Y ].

The ring structure is given by [X][Y ] = [X × Y ] for any varieties X and Y .

This ring is very complicated; for example, it has zero divisors. One way to study its structures is through
motivic measures.

Definition 1.2. A motivic measure is a (ring) homomorphism K0(Vark) A. In other words, a motivic
measure is an invariant µ on the Grothendieck ring of varieties which satisfies the relation that µ(X) =

µ(Y ) + µ(X\Y ) for any closed immersion Y X. If this invariant is also multiplicative, in the sense that
µ(X × Y ) = µ(X)µ(Y ) then it is a ring homomorphism.

Example 1.3. When k is finite: point counting over k (to Z).

Example 1.4. When k = C: Let MHSQ be the category of finite-dimensional Q-vector spaces with mixed
Hodge structures. We can define K0(MHSQ) to be the free abelian group generated by finite-dimensional
Q-vector spaces with mixed Hodge structures, modulo the relation that when we have an exact sequence

0 A B C 0

of vector spaces with mixed Hodge structures, then [B] = [A] + [C]. We can define a motivic measure by

χHodge(X) =
∑
i≥0

(−1)i[Hi
c(X(C),Q)].

Example 1.5. When k is finite: Let Repcts(Gk; Q`) be the category of continuous representations of the
Galois group of k. We can define K0(Repcts(Gk; Q`) analogously to the above. We can define a motivic
measure with values in K0(Repcts(Gk; Q`) by

χ`(X) =
∑
i≥0

(−1)i[Hi
c(X,Q`)].

Here, Hi
c denotes the `-adic cohomology of X.

Example 1.6. Suppose that k = Fq. The local zeta function of X, Z(X, t), is defined by

Z(X, t) = exp
∑
r≥1

1

r
|X(Fqr )|tr.

This gives a homomorphism K0(Vark) (1 + Z[[t]],×).

Note that two of these measures look like Euler characteristics. This is a common feature of such examples,
and, in fact, if we forget the Hodge structure in the second example we get the usual Euler characteristic
with compact supports.

From the Lefschetz fixed point formula we can relate Examples 1.5 and 1.6 since

|X(k)| =
∑
i

(−1)i trFq|Hi
c(X,Q`)
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(where Fq is the Frobenius) all of the data of the local zeta function is contained in the action of GFq on
H∗c (X,Q`). The advantage of stopping here is that this is a category with a lot of structure, and which
has a K-theory that we can try to analyze. It remembers that local zeta functions are rational, unline the
formulation given in Example 1.6.

Thus we can now think of Z(·, t) as a function K0(Vark) K0(Repcts(Gk; Q`)). Once we think of it
this way it is reasonable to ask whether there is a map of spaces1 which produces Z(·, t) after applying π0.

2. K-theory

Let’s step back for a minute and think about K-theory. Algebraic K-theory takes a Grothendieck group
(such as the ones mentioned above) and produces a space where the Grothendieck group is given by the
connected components. This space is constructed in a manner so that the higher homotopy groups of the
space give further interesting algebraic information.

Definition 2.1. A Waldhausen category E is a category with two subcategories cE and wE , called the

cofibrations (denoted ) and weak equivalences (denoted ∼ ). These satisfy the following axioms:

• cE and wE contain all isomorphisms.
• E has a zero object 0 and for all A ∈ E , 0 A is a cofibration.
• Pushouts along cofibrations exist and the pushout of a cofibration is a cofibration.
• For any diagram

C A B

C ′ A′ B′

∼ ∼ ∼

the map B ∪A C ∼ B′ ∪A′ C ′ is a weak equivalence.

To a Waldhausen category E we can assign a space K(E); then Ki(E) is defined to be πi(E). These exist
for all i ≥ 0 and are always abelian groups.

Example 2.2. Let R be a commutative ring with unit. The category ModfgpR is the category of finitely-
generated projective R-modules. This is a Waldhausen category where the weak equivalences are the iso-
morphisms and the cofibrations are the injections with projective cokernel.

Example 2.3. Moreover, the category Chf (R) of bounded chain complexes of finitely-generated projective
R-modules is a Waldhausen category, where the weak equivalences are the quasi-isomorphisms and the

cofibrations are the injections with projective cokernel. There is an inclusion ModfgpR Chf (R) which
puts an R-module at level 0; this induces an equivalence on K-theory.

Example 2.4. The category Aut(R) has objects pairs (P, f), where P ∈ ModfgpR and f ∈ Aut(P ) and

morphisms h: (P, f) (Q, g) are morphisms h:P Q such that hf = gh. This inherits a Waldhausen

structure from ModfgpR .

Example 2.5. Rep(Gk,Q`) and MHSQ are also a Waldhausen categories.

Thus if we want to straightforwardly lift Z(·, t) to a K-theory map then we need to show how to obtain
K0(Vark) as the K0 of a Waldhausen category.

Lie 2.6. There is a Waldhausen category Var where the objects are varieties, the cofibrations are closed
immersions and the weak equivalences are isomorphisms.

(To see the truth, see Jonathan Campbell’s paper on the Grothendieck spectrum of varieties.)
This lie is morally true, however. And we then get a theorem:

Theorem 2.7 (Campbell–Wolfson–Z). The assignment X 7→ Gk · H∗et,c(X ×k k
s; Q`) lifts to a map of

K-theory spectra
K(Vark) K(Repcts(Gk; Q`).

1Actually, what we’re interested is a map of spectra; for those not comfortable with spectra, thinking of this as a map of

spaces will not lose anything in the context of this talk.
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Specializing to Frobenius acting on the compactly-supported cohomology, we get a map K(Vark) K(Aut(Q`))
which gives exactly the data necessary for the construction of the local zeta function.

To recover the local zeta function from K0(Aut(Q`)) we take a pair (P, f) to det(1− f∗t;P ).
This is exactly the map that we wanted. So the further question now is: so what? can we get any useful

information out of this?

3. Finding nontrivial elements in K1

Let’s step back for a minute and think of a simpler example. The category FinSet∗ of pointed finite
sets (with inclusions and isomorphisms) is a Waldhausen category. We have a functor Vark FinSet∗
given by X 7→ X(k). We can apply K to produce the K-theory of each side. The K-theory of FinSet∗ is
well-known: it is QS0 and its homotopy groups are the stable homotopy groups of spheres. In particular,
K0(FinSet∗) is Z, which corresponds to the size of a set, and the map K0(Vark) K0(FinSet∗) is point
counting. K1(FinSet∗) is Z/2 and encodes the sign of a permutation: given any automorphism of a set

(permutation) it is taken to its sign. The functor Vark FinSet∗ has a section FinSet∗ Vark, given
by including finite sets as zero-dimensional varieties. Thus we definitely have non-trivial classes in K1(Vark)
which are represented by permutations of zero-dimensional varieties. However, these are not very interesting,
since they do not use any of the more interesting structure of varieties.

We can use the constructed zeta function to find a more interesting element in K1(Vark) whenever
k is finite with |k| ≡ 3 (mod 4). In general, for any object X in a Waldhausen category E , there is a

homomorphism Aut(X) K1(E). Thus to find an interesting element in K1(Vark) we want to find a

homomorphism K1(Aut(Q`)) A and a variety X such that we can compute the composition

Aut(X) K1(Var) K1(Aut(Q`)) K1(Aut(Q`)) A

on the image of π1(FinSet∗) and an element in Aut(X) which does not map into that image.
An element in K1(Aut(Q`)) is represented by a pair of commuting automorphisms (f, g) of a finite

dimensional Q`-vector space. Then there is a map (constructed by Milnor) which takes (f, g) to f−1 ? g,
which is an element in KM

2 (Q`). This in turn supports the 2-adic Hilbert symbol (−.−)2 which is a map

KM
2 (Q`) Z/2; this is defined on {α, β} to be 1 if z2 = αx2 + βy2 has a non-zero solution in Q3

` , and −1
if not.

Let X be a variety and ϕ an automorphism of X. Under the composition K1(Vark) K2(Q`) this
maps to Frob−1 ? ϕ. If we trace through the definition of ? (which is nontrivial) we see that this maps to
(−1, 1)2 = 1. On the other hand, if we let X = P1 q P1 and let ϕ be the transposition of the two lines, this
maps to (−1, q)2, which when q ≡ 3 (mod 4) is −1. Thus the element in K1(Vark) is nontrivial.


