


Abstract

A New Filtration of the Magnus Kernel

by

R. Taylor McNeill

For a oriented genus g surface with one boundary component, Sg, the Torelli group

is the group of orientation preserving homeomorphisms of Sg that induce the identity

on homology. The Magnus representation of the Torelli group represents the action

on F/F
�� where F = π1(Sg) and F

�� is the second term of the derived series. I show

that the kernel of the Magnus representation, Mag(Sg), is highly non-trivial and has

a rich structure as a group. Specifically, I define an infinite filtration of Mag(Sg) by

subgroups, called the higher order Magnus subgroups, Mk(Sg). I develop methods

for generating nontrivial mapping classes in Mk(Sg) for all k and g ≥ 2. I show that

for each k the quotient Mk(Sg)/Mk+1(Sg) contains a subgroup isomorphic to a lower

central series quotient of free groups E(g − 1)k/E(g − 1)k+1. Finally I show that

for g ≥ 3 the quotient Mk(Sg)/Mk+1(Sg) surjects onto an infinite rank torsion free

abelian group. To do this, I define a Johnson–type homomorphism on each higher

order Magnus subgroup quotient and show it has a highly non-trivial image.
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Chapter 1

Introduction

1.1 Background

A central goal to the field of topology is to classify manifolds up to homeomorphism.

For surfaces (2−manifolds), this classification has been achieved. For example, ori-

ented surfaces are completely classified by their genus and number of boundary com-

ponents. With this goal completed, we seek to understand the algebraic structure of

the homeomorphisms between these surfaces.

Understanding homeomorphisms of surfaces is crucial to classifying 3-manifolds.

Given a surface Σ, one can obtain a 3-manifold from a “mapping torus” construc-

tion, by which one uses a homeomorphism f : Σ → Σ to obtain a quotient space

Σ × I/(x, 0) ∼ (f(x), 1). Intuitively, in this construction the “ends” of Σ × I are

glued together by the homeomorphism f . In the case where Σ has no boundary, the

result is a closed 3-manifold which fibers over the circle. If Σ has boundary compo-

nents bi and f is a homeomorphism fixing the components pointwise, one can obtain

1
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a closed 3-manifold M from the mapping torus by adding the additional identification

(y, t) ∼ (y, t�) for all y ∈ ∂Σ, and t, t
� ∈ [0, 1]. In the latter case, the mapping torus

Σ×I

(x,0)∼(f(x),1),(y,t)∼(y,t�) is called an open book decomposition of M . Open book decompo-

sitions have been shown by Giroux and Thurston-Winkelnkemper to correspond with

contact structures on closed 3-manifolds up to positive stabilization [8] [19]. These ap-

plications make homeomorphisms of surfaces, more specifically mapping class groups,

an integral tool in active areas of 3-manifold topology. These homeomorphism groups

are also applied broadly in geometric group theory and algebraic geometry.

Let S be a closed orientable surface of genus g with 1 boundary component (we

will sometimes denote this surface by Sg when it is necessary to be precise about the

genus of the surface). The mapping class group of S, denoted Mod(S) is the group

of classes of orientation preserving homeomorphisms of S which fix the boundary

pointwise. Two homeomorphisms represent the the same element (called a mapping

class) if they are isotopic maps where the isotopy also fixes the boundary pointwise.

A thorough introduction to mapping class groups can be found in [5].

Dehn twists provide some simple examples of mapping classes. A Dehn twist is

a self-homeomorphism of a surface achieved by cutting the surface along a simple

closed curve, twisting one of the new boundary components by one full rotation, and

re-gluing, as illustrated in Figure 1.1. The Lickorish twist theorem [12] states that

Figure 1.1: An illustration of a Dehn twist performed about the dotted curve.



3

the mapping class group is generated by Dehn twists.

While we will make extensive use of Dehn twists, the framework for our study is

more algebraic in nature. In particular we study the mapping class group through

an analysis of the fundamental group of the surface, denoted π1(S, ∗). As we re-

strict to maps which fix the boundary of S pointwise, by choosing a basepoint x0

on the boundary of S, a homeomorphism f : S → S induces an automorphism

f∗ : π1(S, ∗) → π1(S, ∗). For the future, we will drop the ∗ from this notation and

denote the fundamental group of S by π1(S) with the basepoint assumed to lie on

the boundary. This correspondence induces a map

Mod(S) �→ Aut(π1(S))

which is well defined on mapping classes and yields an injective homomorphism. This

homomorphism provides an algebraic lens for studying the mapping class group. It

is important to note that for surfaces with boundary, π1(S) is a free group, and

hence Aut(π1(S)) is quite large. Hence to effectively employ this homomorphism we

instead study mapping classes which approximate the identity automorphism. More

specifically, we study subgroups of the form ker (Mod(S) → Aut(π1(S)/H) where H

is a characteristic subgroup of π1(S). There is well known commutator series {Gn}

known as the lower central series defined for any group G wherein each term Gn is

a characteristic subgroup of G. Specifically, the terms of the lower central series of

a group G are given inductively by G1 = G, Gk = [Gk−1, G]. The mapping classes

which act trivially modulo terms of the lower central series of π1(S) form the well–

studied (for example [4], [7], [13], [14]) Johnson subgroups of the mapping class group.
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More precisely, the kth Johnson subgroup, Jk(S), is given by Jk(S) = ker(Mod(S) →

Aut(π(S)/π1(S)k). Since a homeomorphism which acts trivially modulo π1(S)k also

acts trivially modulo larger subgroups of π1(S), and π1(S)n ⊂ π1(S)k for all n > k,

the Johnson subgroups are nested and hence form a filtration of the mapping class

group:

Mod(S) = J1(S) ⊃ J2(S) ⊃ · · · ⊃ Jk(S) · · ·

The second term of this filtration, J2(S) is the subgroup of the mapping class

group which acts trivially on the homology of S. This subgroup is more commonly

known as the Torelli group and frequently denoted I. The Torelli group plays a crucial

role in the study of mapping class groups of surfaces as the quotient Mod(Σ)/I(Σ)

is a well understood symplectic group.

An important tool in the study of the Torelli group is the Magnus representation.

There are several Magnus representations for various groups defined via Fox calculus

derivatives [2]. Of particular interest to the study of mapping class groups is the

Magnus representation of the Torelli group, which can be defined as follows. Given a

basis, {x1, . . . , xn}, for π1(S), the Magnus representation of the Torelli group is map

which sends a mapping class f ∈ Mod(S) to a 2g× 2g matrix with entries in ZH1(S)

namely,

f �→
�
φ

�
∂f(xi)

∂xj

��

i,j

.

where ∂f∗(xi)
∂xj

is the Fox calculus derivative of f∗(xi) with respect to xj and

φ : Z[π1(S)] → Z[H1(S)] is the natural projection. However, the kernel of the Mag-

nus representation, Mag(S) also has a characterization in terms of induced automor-
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phisms [3]. Specifically,

Mag(S) = ker (Mod(S) → Aut(π1(S)/π1(S)
��)

where π1(S)�� = [[π1(S), π1(S)], [π1(S), π1(S)]] is the second commutator subgroup of

π1(S).

While the Magnus representation was first introduced in the 1980s, for many years

it was unknown whether the the Magnus representation was a faithful representation

of the Torelli group. This remained an open question until 2001 when Suzuki con-

structed an explicit mapping class contained in Mag(Sg) for genus g ≥ 2 [18]. In

2009 Church and Farb proved that in fact the Magnus kernel is quite large, exhibit-

ing infinitely many independent elements of the Magnus kernel [3]. In this paper we

demonstrate that Magg is larger still, possessing a nontrivial filtration by subgroups,

called the higher-order Magnus subgroups,

Mag(Sg) = M2(Sg) ⊃ M3(Sg) ⊃ M4(Sg) ⊃ · · ·

for which the successive quotients are themselves infinitely generated. The previous

examples of Church and Farb are all contained in M2(Sg)\M3(Sg). Hence the higher-

order Magnus subgroups reveal new structure in the Magnus kernel.

1.2 Summary of results

The Johnson subgroups have provided a key tool for studying the Torelli group. While

there is a clear similarity between the algebraic characterizations of the Magnus kernel
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and the Torelli group, attempts to define analogous tools for studying the Magnus

kernel have been limited.

For any characteristic subgroup H of π1(S), we define an infinite family of sub-

groups, JH

k
(S), called the higher-order Johnson subgroups. These subgroups form a

filtration of the subgroup ker(Mod(S) → Aut(π1(S)/H)) of the mapping class group.

The higher-order Johnson subgroup filtration is a generalization of the Johnson sub-

group filtration of the Torelli group. In the special case where H = [π1(S), π1(S)],

we call these subgroups the higher-order Magnus subgroups, as they yield a filtra-

tion of the Magnus kernel. We show that these higher-order Johnson subgroups are

have much of the natural structure known for the Johnson subgroups. These proper-

ties include the result that the higher-order Johnson subgroups are equipped with a

homomorphism, analogous to the Johnson homomorphisms.

Theorem 3.1. For each characteristic subgroup H ⊂ F the higher-order Johnson

homomorphisms,

τ
H

k
: JH

k
(S) → HomZ[F/H](H/H

�
, Hk/Hk+1),

are well defined, group homomorphisms for k ≥ 2.

In the special case of the Magnus subgroups, Mk(S) we give an explicit way of

constructing examples in Mk(S) from known examples of mapping classes in Jk(D)

where D is a disk with n holes.

Lemma 5.1. Let i : D → S be an embedding such that each boundary component of

i(D) is either separating in S, or the boundary component of S. Let [f ] ∈ Mod(D)

and let f be a homeomorphism representing [f ]. Let f � : S → S be the homeomorphism
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defined by

f
�(x) =






f(x) x ∈ D

x x ∈ S \D

then if [f ] ∈ Jk(D), [f �] ∈ Mk(S).

Using this construction, we describe an explicit subgroup ofMk(S)/Mk+1(S) which

is isomorphic to a lower central series quotient of free groups. For E(n) the free group

on n generators, we show the following result.

Theorem 5.6. Let Sg be an orientable surface with genus g ≥ 3. Then the

map ρ : E(g − 1) → Mod(Sg) induces a monomorphism on the quotients

ρ : E(g − 1)k/E(g − 1)k+1 �→ Mk(Sg)/Mk+1(Sg) for all k.

Finally, we construct an epimorphism onto an infinite rank torsion free abelian

subgroup of
F

�
k

F
�
k+1

, where F = π1(S) is the fundamental group of S and F
� is its

commutator subgroup. Using Magnus homomorphism computations we prove:

Theorem 5.7. Let S be an orientable surface with genus g ≥ 3. Then the successive

quotients of the Magnus filtration Mk(S)
Mk+1(S)

surject onto an infinite rank torsion free

abelian subgroup of
F

�
k

F
�
k+1

via the map

Mk(S)

Mk+1(S)

τ
�
k(−)[c6,c2]−→ F

�
k

F
�
k+1

where c6 and c2 are generators in the carefully chosen basis for F shown in Figure 5.8.

These results establish key tools for working with the Magnus subgroups and

unveil new structure in this poorly understood subgroup of the Torelli group.
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1.3 Outline of thesis

We begin in Chapter 2 by providing an overview of the original Johnson subgroups

and homomorphisms. As the higher-order Johnson and Magnus subgroups and ho-

momorphisms are a generalization of these ideas, the Johnson subgroups provide a

crucial foundation for the paper.

While many of the results presented in this chapter are well known for surfaces with

at most one boundary component, we also provide a detailed discussion of generalized

Johnson homomorphisms on surfaces with multiple boundary components. Johnson

subgroups of surfaces with multiple boundary components have been employed before,

but a precise and detailed treatment of these cases have not yet appeared in the

literature. We also present some new results showing some properties of traditional

Johnson subgroups to apply to surfaces with multiple boundary components.

In Chapter 3 we define generalizations of the Johnson subgroups and homomor-

phisms called the higher-order Johnson subgroups and homomorphisms. A specific

case of these generalized Johnson subgroups are the Magnus subgroups. These Mag-

nus subgroups provide a filtration of the Magnus kernel and are the central focus of

our study.

Chapter 4 contains some group theoretic results that are useful in proving our

main theorem. These results primarily focus on the lower central series quotients of

an infinitely generated free group, E, and its commutator subgroup, E �. We provide

several generalizations of the basis theorem for lower central series quotients of free

groups which applies to groups which are infinitely generated. We also explore the
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Z[F/F �] module structure of F �
k
/F

�
k+1 where F = π1(S) for use in computing Magnus

homomorphisms.

In Chapter 5 we prove our main results. We develop a correspondence between

Magnus subgroups on surfaces with one boundary component and Johnson subgroups

on disks. We use this correspondence to explore the structure and size of the successive

quotients of the higher-order Magnus subgroups Mk/Mk+1. We demonstrate that

there is a specific subgroup of Mk(Sg)/Mk+1(Sg) that is isomorphic to the finitely

generated free abelian group E(g− 1)k/E(g− 1)k+1 where E(g− 1) is the free group

on g − 1 generators and Sg is an oriented surface of genus g. We also show that

successive quotients of the higher-order Magnus subgroups Mk/Mk+1 are infinitely

generated by displaying a surjection to a infinite rank torsion free abelian group.



Chapter 2

Johnson Subgroups and

Homomorphisms

2.1 Johnson subgroups and Johnson homomorphisms

for surfaces with one boundary component

Let S be an oriented surface with one boundary component. Let F denote the

fundamental group of S with a basepoint chosen on the boundary of the surface

(note that the fundamental group is a free group). A self–homeomorphism f of S

induces an automorphism f∗ : F → F . This function from homeomorphisms of S to

automorphisms of F is well defined on isotopy classes of homeomorphisms and yields

the following monomorphism:

Mod(S) �→ Aut(π1(S)).

Given a group G, the lower central series of G, {Gn} is given inductively by

10
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G1 = G, Gk = [Gk−1, G], where [Gk−1, G] is the subgroup of G generated by elements

of the form aba
−1
b
−1, a ∈ G, b ∈ Gk−1.

The mapping classes which act trivially modulo terms of the lower central series

of F form the well–studied Johnson subgroups of the mapping class group.

Definition 2.1. The k
th Johnson subgroup is the subgroup of the mapping class

group given by Jk(S) = ker(Mod(S) → Aut(F/Fk)).

Note that for n > k, as Fn ⊂ Fk the map from Mod(S) to Aut(F/Fn) factors

through Aut(F/Fk):

Mod(S) ��

��

Aut(F/Fk)

Aut(F/Fn)

��

Hence ker(Mod(S) → Aut(F/Fn)) ⊂ ker(Mod(S) → Aut(F/Fk)) and thus Jn(S) ⊂

Jk(S). We achieve a filtration of the Torelli group:

Mod(S) = J1(S) ⊃ J2(S) ⊃ · · · ⊃ Jk(S) · · ·

It is an easy task to define filtrations of the Torelli group, however the filtration by

Johnson subgroups has been integral in their study. The Johnson subgroup filtration

earns its important place in the study of mapping class groups for the many avail-

able tools that can be employed for their study. One class of tools frequently used

in exploring the Johnson subgroups is the Johnson homomorphisms. While these

homomorphisms can be defined in a variety of ways, for the course of this paper we

find the following definition of the Johnson subgroups to be the most convenient.
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Definition 2.2. Let [x] ∈ H1(S) and let x be an element of the fundamental group

in the homology class [x]. For f ∈ Jk(S) f(x) ≡ x mod π1(S)k or equivalently

f(x)x−1 ∈ π1(S)k. The k
th Johnson homomorphism

τk : Jk(S) → Hom(H1(S), π1(S)k/π1(S)k+1)

is given by τk(f) = ([x] �→ [f(x)x−1]).

While this definition provides for easy calculations, it does not provide much

clarity for why such a homomorphism is well defined. For a more thorough treatment,

see [10].

Remark 2.1. It is important to note that ker τk = Jk+1(S). That ker τk ⊃ Jk+1(S) can

be readily seen as for f ∈ Jk+1(S), f(x)x−1 ∈ π1(S)k+1, and hence f(x)x−1 is trivial

in π1(S)k/π1(S)k+1 for all [x]. To see that ker τk ⊂ Jk+1(S), note that if f ∈ ker τk,

then f(x)x−1 ∈ Fk+1 for all classes [x]. Thus f(x) = x mod Fk+1 and therefore

f ∈ ker(Mod(S) → Aut(F/Fk). Thus f ∈ Jk+1(S).

This fact provides an enlightening result when performing Johnson homomorphism

computations. If f is an element of Jk(S) such that τk(f) �= 0, then f /∈ Jk+1(S).

Thus computing τk(f) �= 0 pins the precise location of f in the Johnson filtration to

Jk(S)/Jk+1(S).
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2.2 Johnson subgroups and homomorphisms for

surfaces with multiple boundary components

Through the course of this paper we will employ Johnson homomorphisms on sur-

faces with multiple boundary components. There are many variations for Johnson

subgroups with multiple boundary components. In addition, there are many cases

in which surfaces with multiple boundary components are overlooked in the study

of mapping class groups. Resources detailing definitions and results concerning sur-

faces with multiple boundary components are sparse difficult to find. Treatment of

Johnson subgroups and Johnson homomorphisms for surfaces with multiple boundary

components can be found in [4], [15], [16]. We will take this opportunity to address an

analog of the Johnson machinery in detail for surfaces with multiple boundary compo-

nents, through a perspective compatible with our following definitions of higher-order

Johnson subgroups.

Let Σ be an orientable surface with m + 1 boundary components. Choose an

ordering of the boundary components b0, . . . , bm. Let pi be a point on the ith boundary

component (we choose p0 to be the basepoint for π1(Σ)). Choose arcs Ai which

originate from p0 and terminate at pi for each 0 < i < m.

Definition 2.3. Let f ∈ Mod(Σ). Then f is in the kth Johnson subgroup of Σ, Jk(Σ)

if f satisfies the following two properties:

1. For γ ∈ π1(Σ), f∗(γ)γ−1 ∈ π1(Σ)k.

2. For all Ai,
�
f(Ai)Ai

�
∈ π1(Σ)k
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where Ai is the reverse of the path Ai.

Note that when m = 0 we obtain from this definition the standard Johnson

subgroups for a surface with a single boundary component. Note also that the com-

bination of properties (1) and (2) show that the Johnson subgroups on surfaces with

multiple boundary components are independent of the ordering of the boundary com-

ponents, the choices of points pi and the choices of arcs Ai.

Given this definition of Johnson subgroups on surfaces with multiple boundary

components, we would like to be able to easily generate examples of elements in the

Johnson subgroups for these surfaces. Below is a generalization of a result of Morita

[13], which allows us to generate examples in the Johnson subgroups via commutators.

Lemma 2.2. Let Σ be an oriented surface with at least one boundary component. Let

fk ∈ Jk(Σ) and fl ∈ Jl(Σ). Then the commutator [fk, fl] is contained in Jk+l−1(Σ).

Proof. It suffices to prove the statement for k ≤ l. To show that [fk, fl] is contained

in Jk+l−1(Σ), we must show the following two conditions are satisfied:

(i) For each arc Ai connecting the basepoint to the i
th boundary component,

[fk, fl](Ai)Ai ∈ Fk+l−1.

(ii) For all x ∈ π1(Σ), [fk, fl](x)x−1 ∈ Fk+l−1.

A result of Morita ([13] Corollary 3.3) shows condition (ii) to be satisfied in the case

where Σ is a closed surface with a marked point. In addition, Morita [13] shows when

Σ is a closed surface with a marked point, y ∈ Fl, fk∗(y)y−1 ∈ Fk+l−1. While these

results are not stated for surfaces with multiple boundary components, the proofs
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employ only the property that for γ ∈ π1(Σ) and f ∈ Jn(Σ), f∗(γ)γ−1 ∈ π1(Σ)n. As

this property also holds for surfaces Σ with multiple boundary components, identical

arguments show analogous results for the case of multiple boundary components. We

will employ these results for surfaces Σ with multiple boundary components with no

further proof.

It suffices to show that [fk, fl](Ai)Ai ∈ Fk+l−1. For this we follow the structure of

the aforementioned corollary. As fk ∈ Jk(Σ), fk(Ai)Ai ∈ Fk. Let xk = fk(Ai)Ai ∈ Fk

and note that fk(Ai) is homotopic rel endpoints to the path xkAi. Applying f
−1
k

to

this expression we find Ai � f
−1
k

(xk)f
−1
k

(Ai) or f
−1
k

(xk)Ai � f
−1
k

(Ai). Similarly we

know fl ∈ Jl(Σ), fl(Ai)Ai ∈ Fl. Defining xl = fl(Ai)Ai ∈ Fl we have fl(Ai) � xlAi

and f
−1
l

(xl)Ai � f
−1
l

(Ai). Using this we can perform the following computation:

[fk, fl](Ai) = fkflf
−1
k

(f−1
l

(Ai))

� fkflf
−1
k

(f−1
l

(x−1
l
)Ai)

� fkfl(f
−1
k

f
−1
l

(x−1
l
)f−1

k
(Ai))

� fkfl(f
−1
k

f
−1
l

(x−1
l
)f−1

k
(x−1

k
)Ai)

� fk(flf
−1
k

f
−1
l

(x−1
l
)flf

−1
k

(x−1
k
)fl(Ai))

� fk(flf
−1
k

f
−1
l

(x−1
l
)flf

−1
k

(x−1
k
)xlAi)

� [fk, fl](x
−1
l
)fkflf

−1
k

(x−1
k
)fk(xl)fk(Ai)

� [fk, fl](x
−1
l
)fkflf

−1
k

(x−1
k
)fk(xl)xkAi

This gives us the following expression for the homotopy class of the loop [fk, fl](Ai)Ai
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in π1(Σ):

�
[fk, fl](Ai)Ai

�
= [fk∗, fl∗](x

−1
l
)fk∗fl∗f

−1
k∗ (xk)fk∗(xl)xk

= [fk∗, fl∗](x
−1
l
)xlx

−1
l
fk∗fl∗f

−1
k∗ (x

−1
k
)xkxlx

−1
l
x
−1
k
fk∗(xl)x

−1
l
xkxl[x

−1
l
, x

−1
k
]

As k ≤ l, Jl(Σ) ⊂ Jk(Σ) and so [fk, fl] ∈ Jk(Σ). As shown in [13], lemma 3.2

(i), for y ∈ Fl, fk∗(y)y−1 ∈ Fk+l−1. Thus [fk∗, fl∗](x
−1
l
)xl ∈ Fk+l−1. Looking at this

expression mod Fk+l−1 we have that [fk, fl](x
−1
l
)xl = 1. By [13] Lemma 3.2 (ii) the

class of fkflf
−1
k

(x−1
k
)xk is equal to that of fl(x

−1
k
)xk and is thus also in Fk+l−1 by

[13] 3.2 (i). Similarly, fk(xl)x
−1
l

∈ Fk+l−1. As [x−1
l
, x

−1
k
] ∈ [Fl, Fk] ⊂ Fk+l ⊂ Fk+l−1

this term also reduces to 1 modulo Fk+l−1. Since the entire expression is trivial mod

Fk+l−1 it follows that
�
[fk, fl](Ai)Ai

�
∈ Fk+l−1.

It is natural to seek an analog for the Johnson homomorphisms which apply to

surfaces with multiple boundary components. Let ∆ be an open arc on b0 originating

at p0. Let Σ = ∂ (Σ× I)\(int(∆× I)). Note that Σ is a doubled version of the surface

Σ with an added boundary component, as illustrated in Figure 2.1. Let i : Σ → Σ

be the natural embedding which sends Σ to Σ× {0}. We give Σ an orientation that

agrees with the orientation on Σ. We will define the Johnson homomorphisms on Σ

via the Johnson homomorphisms on Σ.

In order to do this, we first develop some algebraic tools to relate the homology

and lower central series quotients of the fundamental groups of Σ and Σ. These build

on a result of Stallings ([17], Theorem 7.3), reproduced below. We first define an
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Σ× 0 = i(Σ)

i(p0)
∆
. . . . . .

Figure 2.1: An illustration of the doubled surface Σ.

adaptation of the lower central series: the rational lower central series. We employ

this commutator series to gain insight on the lower central series of free groups.

Definition 2.4. Let G be a group. The rational lower central series of G, with terms

G
r

n
, is defined inductively by setting G

r

1 = G and where G
r

n+1 is the subgroup of G

generated by set S = {[x, u]|x ∈ G, u ∈ G
r

n
} and elements w for which some power

of w is a product of elements in S.

More intuitively, Gr

n+1 is the smallest subgroup of Gr

n
such that G

r

n+1 is central

in G and G/G
r

n+1 is torsion free. Note that for a free group E, the standard lower

central series quotients E/En are torsion free. Thus for a free group E, the lower

central series of E coincides with its rational lower central series.

Theorem 2.3 (Stallings). If f : A → B a homomorphism of abelian groups inducing

an isomorphism f∗ : H1(A,Q) → H1(B,Q), and a surjective mapping H1(A,Q) �
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H1(B,Q). Then for all finite n, f induces isomorphisms

(Ar

n−1/A
r

n
)⊗Q ∼= (Br

n−1/B
r

n
)⊗Q

and for all k, Hk(A/Ar

n
) ∼= Hk(B/B

r

n
); f induces embeddings A/A

r

n
⊂ B/B

r

n
and an

embedding A/A
r

ω
⊂ B/B

r

ω
at the first infinite ordinal ω.

We prove the following proposition employing Stalling’s result.

Proposition 2.4. Let A and B be groups with H2(A;Q) = H2(B;Q) = 0. Let

h : A → B be a group homomorphism inducing an injection H1(A;Q) �→ H1(B;Q),

then for all n, h induces an injection A/A
r

n
�→ B/B

r

n
.

Proof. Consider the injection h∗ : H1(A;Q) → H1(B,Q). As H1(B,Q) is a Q vector

space, it decomposes as H1(B;Q) ∼= H1(A;Q) ⊕ V where V is a Q vector space.

Let C be a free group of the same rank as V with generating set {ci} and note that

H1(C;Q) ∼= V . Let {ei} be a basis for V and choose elements bi ∈ B such that

bi �→ ei through the isomorphism H1(B;Q) ∼= H1(A;Q)⊕V . There is a unique group

homomorphism g : C → B such that ci �→ bi. Consider the map h ∗ g : A ∗ C →

B. By construction, this is a group homomorphism which induces an isomorphism

(h ∗ g)∗ : H1(A ∗C;Q) → H1(B;Q). As H2(A ∗C) = H2(B) = 0, clearly the induced

map H2(A ∗ C;Q) → H2(B;Q) is surjective. Hence by Stallings result, for all n,

A ∗ C/(A ∗ C)r
n

(h∗g)∗∼= B/B
r

n
. As

A/A
r

n
�→ A/A

r

n
∗ C/Cr

n
∼= A ∗ C/(A ∗ C)r

n

(h∗g)∗∼= B/B
r

n
,

the map A/A
r

n
→ B/B

r

n
induced by h is injective.
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Remark 2.5. Note that for a free group E, since E is torsion free, the rational lower

central series agrees with the standard lower central series, i.e. E
r

n
= En. Hence

for free groups A and B satisfying the conditions of Proposition 2.4 we achieve an

injection A/An �→ B/Bn on the standard lower central series quotients. We will make

extensive use of this fact throughout the paper.

For ease of notation, let us rename C = π1(Σ, p0) and C = π1(Σ, i(p0)).

Lemma 2.6. The embedding i : Σ → Σ induces a group monomorphism

i∗ :
Ck

Ck+1
→ Ck

Ck+1

.

Proof. This is a direct application of Proposition 2.4. Note that as Σ and Σ are

surfaces with boundary, they each deformation retract to a wedge of circles. Thus

πn(Σ) = πn(Σ) = 1 for n > 1. Thus Σ is a K(C, 1) and Σ is a K(C, 1). Hence

H2(C,Q) = H2(Σ,Q) = 0 and H2(C,Q) = H2(Σ,Q) = 0. The embedding i induces

a homomorphism C → C and a monomorphism i∗ : H1(C;Q) → H1(C;Q). Thus

C and C satisfy the conditions of Proposition 2.4 and hence we achieve an injective

homomorphism i∗ :
Ck

Ck+1
→ Ck

Ck+1
.

We now work to relate the homology of Σ and Σ. Let Θ = Σ \ int (i(Σ)) and let

j : Θ → Σ be the natural inclusion map. The inclusion j yields the following long

exact sequence of a pair:

· · · → H1(Θ)
j∗→ H1(Σ)

π→ H1(Σ,Θ) →
∼
H0 (Θ) →

∼
H0 (Σ).

Note in particular that this exact sequence provides us with an isomorphism

π :
H1(Σ)

j∗(H1(Θ))

∼=→ H1(Σ,Θ).
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By excision, the inclusion i : Σ → Σ induces an isomorphism on homology:

i∗ : H1(Σ, ∂Σ)
∼=→ H1(Σ,Θ).

Hence there is an isomorphism

π
−1
i∗ : H1(Σ, ∂Σ)

∼=→ H1(Σ)

j∗(H1(Θ))
.

Let [f ] ∈ Jk(Σ) and let f be a representative homeomorphism of [f ]. Let

f : Σ → Σ be given by

f(x) =






f(x) if x ∈ Σ

x if x /∈ Σ

.

Let i� : Mod(Σ) → Mod(Σ) be the map given by i
�([f ]) =

�
f
�
. Note that this map is

well defined since isotopic maps on Σ extend to isotopic maps on Σ. It is naturally a

homomorphism.

Let ηk be the map

ηk : Hom

�
H1(Σ)

j∗(H1(Θ))
,
Ck

Ck+1

�
→ Hom

�
H1(Σ, ∂Σ),

Ck

Ck+1

�

which is the dual of the isomorphism π
−1
i∗.

Lemma 2.7. Given a mapping class [f ] ∈ Mod(Σ), τk (i�([f ])) ∈ Hom

�
H1(Σ)

j∗(H1(Θ)) ,
Ck

Ck+1

�
.

Furthermore, for [α] ∈ H1(Σ, ∂Σ),

ηkτki
� ([f ]) [α] ∈ i

�
Ck

Ck+1

�
.

Equivalently, we have the following sequence of maps

Jk(Σ)
i
�

→ Jk(Σ)
τk→ Hom

�
H1(Σ)

j∗(H1(Θ))
,
Ck

Ck+1

�
ηk→ Hom

�
H1(Σ, ∂Σ),

Ck

Ck+1

�

i
−1

→ Hom

�
H1(Σ, ∂Σ),

Ck

Ck+1

�
.
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Proof. To prove the first statement in the lemma we examine an element j∗[β] ∈

H1(Σ). The element [β] ∈ H1(Θ) has a representative element β ∈ π1(Θ). As the

following diagram commutes

π1(Θ)
j∗ ��

��

π1(Σ)

��
H1(Θ)

j∗ �� H1(Σ)

we have that j∗[β] ∈ H1(Σ) has a representative loop β which lies entirely in Θ. Thus

by definition of i�, for any [f ] ∈ Jk(Σ), τk (i� ([f ])) [β] = f(β)β−1 = ββ
−1 = 1. Hence

τk (i�([f ])) ∈ Hom

�
H1(Σ)

j∗(H1(Θ)) ,
Ck

Ck+1

�
.

To prove that ηkτki
� ([f ]) [α] ∈ i

�
Ck

Ck+1

�
let us consider the following basis for

H1(Σ), shown in Figure 2.2.

a1

a2

a2g−1

a2g

. . . . . .

A1 An

Figure 2.2: A basis for the relative homology H1(Σ, ∂Σ).

Through the map π
−1
i∗ these basis elements map to loops in H1(Σ) as shown in

Figure 2.3.

Note that the loops ai include to the same homology elements of H1(Σ). Let the

arcs Ai be parametrized by t ∈ [0, 1]. Then under this map the arcs Ai are sent to
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a1

a2

a2g−1

a2g

A1 An

. . . . . .

Figure 2.3: The elements of H1(Σ) corresponding to the basis of H1(Σ, ∂Σ) chosen in

Figure 2.2.

loops ci given by:

ci(t) =






(Ai(4t), 0) 0 ≤ t ≤ 1/4

(pi, 4t− 1) 1/4 < t < 1/2

(Ai(3− 4t), 1) 1/2 ≤ t < 3/4

(p0, 4− 4t) 3/4 ≤ t ≤ 1

as illustrated in Figure 2.3. First, note that for any homology class [α] ∈ H1(Σ) which
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has a representative loop α ∈ i∗π1(Σ) and for any [f ] ∈ Jk(Σ) we have

τk(i
�([f ])[α] = [f(α)α−1]

= [i∗f(α)α
−1]

= i∗[f(α)α
−1]

Hence the image by τk(i�([f ]) of ai yields an element of i∗
�

Ck
Ck+1

�
.

Let Bi be the segment of ci parametrized by 1/4 ≤ t ≤ 1 so that ci = Ai ∪ Bi.

Note that by definition i
�(f) acts by the identity on Bi and acts by f on Ai. By

construction the loops ci are based at p0. Thus they also represent elements of π1(Σ).

We will abuse notation by referring to the parametrized loop, the homotopy class,

and the homology class of ci as ci. Then we may compute τk(i�([f ])ci as follows.

τk(i
�([f ])ci = [f(ci)c

−1
i
]

= [f(AiBi)(AiBi)]

= [i(f(Ai))Bi(AiBi)]

= [i(f(Ai))BiBi Ai]

= [i(f(Ai))Ai]

= [i∗(f(Ai)Ai)]

= i∗[(f(Ai)Ai)]

This shows that for each i, τk(i�([f ])ci ∈ i∗

�
Ck

Ck+1

�
. As τk(i�([f ])[α] ∈ i∗

�
Ck

Ck+1

�

for all elements [α] of a basis for H1(Σ, ∂Σ), then for all [α] ∈ H1(Σ, ∂Σ) we have

τk(i�([f ])[α] ∈ i∗

�
Ck

Ck+1

�
.
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This shows we have the following composition of homomorphisms:

Jk(Σ)
i
�

→ Jk(Σ)
τk→ Hom

�
H1(Σ)

j∗(H1(Θ))
,
Ck

Ck+1

�
ηk→ Hom

�
H1(Σ, ∂Σ), i∗

�
Ck

Ck+1

��
.

By applying i∗
−1

on the range of Hom

�
H1(Σ, ∂Σ), i∗

�
Ck

Ck+1

��
we get the following

composition:

Jk(Σ)
i
�

→ Jk(Σ)
τk→ Hom

�
H1(Σ)

j∗(H1(Θ))
,
Ck

Ck+1

�
ηk→ Hom

�
H1(Σ, ∂Σ),

Ck

Ck+1

�

i∗
−1

→ Hom

�
H1(Σ, ∂Σ),

Ck

Ck+1

�

as desired.

Definition 2.5. We define the generalized Johnson homomorphisms for surfaces with

multiple boundary components τk : Jk(Σ) → Hom (H1(Σ, ∂Σ), π1(Σ)k/π1(Σ)k+1) to

be the composition i
−1
ηkτki

� given in Lemma 2.7.

Thus to compute the Johnson homomorphism for surfaces with multiple boundary

components, we must consider how the mapping class acts on all representatives of

a basis for Hom (H1(Σ, ∂Σ)). In particular, this includes the action on arcs joining

boundary components of Σ. It suffices to consider the action of mapping classes on

arcs Ai (as described in Definition 2.3). As shown in the proof of Lemma 2.7, for

these arcs we obtain the Johnson homomorphism τk([f ]) =
�
[Ai] �→ [f(Ai)Ai]

�
. Note

that Definition 2.3 verifies that f(Ai)Ai is in fact an element of π1(Σ)k as desired.



Chapter 3

Higher-Order Johnson Subgroups

and Homomorphisms

3.1 Higher-Order Johnson Subgroups and Homo-

morphisms

The Johnson subgroups and homomorphisms are heavily built upon the lower central

series. In this section we generalize the concepts of Johnson subgroups and homomor-

phisms to more general characteristic subgroups. These tools are useful in analyzing

subgroups of the mapping class group which induce trivial automorphisms on F/H

for any characteristic subgroup H.

Recall that S is an oriented surface with one boundary component and let ∗ be

a basepoint for π1(S) which lies on the boundary. We are then able to define the

higher-order Johnson subgroups as follows.

25
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Definition 3.1. Let F = π1(S, ∗) and let H be a characteristic subgroup of F .

Let φH : Mod(S) → Aut(F/H) be the map which takes a homeomorphism class in

Mod(S) to the induced automorphism of F/H. We define the higher-order Johnson

subgroup with characteristic subgroup H, JH(S), by J
H(S) = kerφH . Equivalently,

J
H(S) is the subgroup of the mapping class group which acts trivially on F/H.

For any characteristic subgroup H of F , Hk is also a characteristic subgroup of

F . The higher-order Johnson subgroup with characteristic subgroup Hk is denoted

J
H

k
(S). As any homeomorphism acting trivially on F/Hk also acts trivially on F/Hn

for n < k, JH

k
(S) ⊂ J

H

n
(S) for n < k. Hence the subgroups JH

k
(S) form a filtration

of JH(S): the higher-order Johnson filtration with characteristic subgroup H.

J
H(S) = J

H

1 (S) ⊃ J
H

2 (S) ⊃ J
H

3 (S) ⊃ · · · ⊃ J
H

k
(S) ⊃ · · · ,

Note that the traditional Johnson filtration is recovered by choosing H = F .

There is a natural structure on Hk/Hk+1 as a left Z[F/H] module. Here the

module action by elements [g] ∈ F/H is given by [g] · [x] = [gxg−1]. It is clear that

this action is well defined since given g ∈ H and x ∈ Hk, the conjugate gxg
−1
x
−1

belongs to Hk+1. Hence for g ∈ H, [gxg−1] = [x] as elements of Hk/Hk+1. The action

by elements of Z[F/H] is given by the obvious extension. It is important to note

that in general F/H is a nonabelian group, and hence Hk/Hk+1 is a module over a

noncommutative ring.

Having constructed subgroups analogous to the Johnson subgroups, it is natural

to develop a corresponding analog to the Johnson homomorphisms.
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Definition 3.2. The higher-order Johnson homomorphisms,

τ
H

k
(f) : JH

k
(S) → HomZ[F/H](H/H

� → Hk/Hk+1),

are given by τ
H

k
(f) = ([x] �→ [f∗(x)x−1]) where f∗ : F → F is the automorphism

induced by f .

Theorem 3.1. The higher-order Johnson homomorphisms,

τ
H

k
: JH

k
(S) → HomZ[F/H](H/H

�
, Hk/Hk+1),

are well defined, group homomorphisms for k ≥ 2.

Proof. We will start by showing that for each f ∈ J
H

k
(S) the map τ

H

k
(f) is a well

defined Z [F/H]-module homomorphism. We first show that for [a, b] = aba
−1
b
−1,

where a, b ∈ H, τH
k
(f) ([a, b]) = 0 in Hk/Hk+1. By definition,

τ
H

k
(f) ([a, b]) = f∗ ([a, b]) [a, b]

−1

= [f∗(a), f∗(b)][a, b]
−1

= [ad, be][a, b]−1 for some d, e ∈ Hk.

Using the commutator identities [ux, y] = u[x, y][u, y] and [x, vy] = [x, v] v[x, y],

where h
g = hgh

−1, we can simplify this further.

τ
H

k
(f) ([a, b]) = a[d, be][a, be][a, b]−1

= a[d, b] ab[d, e][a, b] b[a, e][a, b]−1
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As d, e ∈ Hk, [d, b], [d, e], [a, e] ∈ Hk+1. Therefore, this expression is trivial in the

quotient Hk/Hk+1.

We will next show that τH
k
(f) is multiplicative. By definition, for a, b ∈ H,

τ
H

k
(f)(ab) = f∗(ab)(ab)

−1

= f∗(a)f∗(b)b
−1
a
−1

= f∗(a)a
−1 a

�
f∗(b)b

−1
�

= f∗(a)a
−1
f∗(b)b

−1 as in Hk/Hk+1, conjugation by

an element in H is trivial.

= τ
H

k
(f)(a)τH

k
(f)(b).

Any w ∈ [H,H] can be written as a product of commutators

w = c1 · · · cn. This completes the proof that τ
H

k
(f) is well defined, as

τ
H

k
(f)(w) = τ

H

k
(f)(c1) · · · τHk (f)(cn) = 0. This also shows that τ

H

k
(f) is a group

homomorphism.

To show that τH
k
(f) is a module homomorphism for a given f we must show for

[g] ∈ F/H and [x] ∈ H/H
�, [g] · τH

k
(f)([x]) = τ

H

k
(f)([g] · [x]). As the module action

is by conjugation, we may compute as follows.
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τ
H

k
(f)([g] · [x]) = τ

H

k
(f)

�
[gxg−1]

�

=
�
f∗(gxg

−1)(gxg−1)−1
�

=
�
f∗(g)f∗(x)f∗(g

−1)gx−1
g
−1
�

=
�
f∗(g)g

−1
gf∗(x)g

−1
gf∗(g

−1)gx−1
g
−1
�

This expression reduces to:

τ
H

k
(f)([g] · [x]) =

�
(f∗(g)g

−1)gf∗(x)g
−1(f∗(g)g

−1)−1
gx

−1
g
−1
�

The element gf∗(x)g−1 ∈ H as H is a characteristic subgroup. As f ∈ J
H

k
, f∗

acts trivially mod Hk, and thus f∗(g)g−1 ∈ Hk. Since τ
H

k
(f) ([x] · [f ]) ∈ Hk/Hk+1,

the conjugation of an element of H by an element of Hk is a trivial conjugation. This

observation yields the following expression.

τ
H

k
(f)([x] · [g]) =

�
gf∗(x)g

−1
gx

−1
g
−1
�

=
�
gf∗(x)x

−1
g
−1
�

= [g] · τH
k
(f)(x)

This concludes the proof that τ
H

k
(f) is an Z[F/H]-module homomorphism. It

remains to show that τ
H

k
: JH

k
(S) → HomZ[F/H](H/H

�
, Hk/Hk+1) is a group homo-

morphism.

Let f 1
, f

2 ∈ J
H

k
(S) and let x ∈ H/H

�. We consider the image of their product by

the map τ
H

k
in the computation below.
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τ
H

k
(f 1

f
2)(x) = (f 1

f
2)∗(x)x

−1

= f
1
∗ f

2
∗ (x)x

−1

= f
1
∗ (f

2
∗ (x))x

−1

= f
1
∗ (f

2
∗ (x))(f

2
∗ (x))

−1
f
2
∗ (x)x

−1

= τ
H

k
(f 1)(f 2

∗ (x)) τ
H

k
(f 2)(x)

As f
2 ∈ J

H

k
(S), f

2
∗ (x) = x as an element of H/H

� for k ≥ 2. Hence

τ
H

k
(f 1)(f 2

∗ (x)) = τ
H

k
(f 1)(x). Combining this with the above computation

gives us the desired result: τ
H

k
(f 1

f
2)(x) = τ

H

k
(f 1)(x) τH

k
(f 2)(x). Thus

τ
H

k
: JH

k
(S) → HomZ[F/H](H/H

�
, Hk/Hk+1) is a group homomorphism.

Proposition 3.2. JH

k+1 ⊂ ker τH
k
. Thus

τ
H

k
:
J
H

k

J
H

k+1

→ HomZ[F/H](H/H
�
, Hk/Hk+1)

is a well defined map.

Proof. By definition, JH

k+1 = ker (Mod(S) → Aut(F/Hk+1)). Thus for [f ] ∈ J
H

k+1, [x] ∈

F/H, we have for any representative homeomorphism f ∈ [f ], f∗(x) = x mod Hk+1.

Rewriting this expression we see f∗(x)x−1 ∈ Hk+1. Thus [f∗(x)x−1] = 1 as an element

of Hk/Hk+1. Hence [f ] ∈ ker τ �
k
.

3.2 higher-order Magnus Subgroups

While the higher-order Johnson subgroups and homomorphisms are defined for any

characteristic subgroup H, this machinery is of particular interest in the case where
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H is the commutator subgroup of F , denoted by [F, F ] or F �. Through the remainder

of the paper, we focus primarily on this case. For clarity, we repeat the definitions of

the higher-order Johnson subgroups and homomorphisms here for this special case.

Definition 3.3. For k ≥ 2, the higher-order Magnus subgroups Mk(S) are given by

Mk(S) = J
[F,F ]
k

(S). Equivalently,

Mk(S) = ker (Mod(S) → Aut(F/F �
k
))

It is of particular importance that M1(S) = ker(Mod(S) → Aut(F/F (1)) is the

Torelli group, and M2(S) = ker(Mod(S) → Aut(F/F (2)) is the kernel of the Magnus

representation of the Torelli group. Thus the higher-order Magnus filtration,

Mag(S) = M2(S) ⊃ M3(S) ⊃ · · · ⊃ Mk(S) ⊃ · · ·

is a filtration of the Magnus kernel.

To investigate the structure of these higher-order Magnus subgroups, we will make

frequent use of their corresponding higher-order Johnson homomorphisms.

Definition 3.4. The higher-order Magnus homomorphisms,

τ
�
k
(f) : Mk(S) → HomZ[F/F �](F

�
/F

�� → F
�
k
/F

�
k+1),

are the higher-order Johnson homomorphisms with characteristic subgroup F
�.

Remark 3.3. Note that as a special case of Proposition 3.2 we have thatMk+1 ⊂ ker τ �
k
.

Hence the Magnus homomorphisms are well defined on successive quotients

τ
�
k
:

Mk

Mk+1
→ HomZ[F/F �](F

�
/F

��
, F

�
k
/F

�
k+1).

Thus, just as with the Johnson homomorphisms, for f ∈ Mk, computing τ
�
k
(f) �= 0

pins the location of f in the higher-order Magnus filtration precisely.



Chapter 4

Algebraic Tools

We take this opportunity to prove some algebraic results that will be of use in proving

our main theorems.

4.1 Basis theorems and properties of lower central

series quotients

We will make extensive use of several variations on the basis theorem for lower central

series quotients of free groups [9] Theorem 11.2.4. We begin by discussing the notation

and results for Hall’s basis theorem before proceeding to generalizations of this result.

Let E be a free group on a free basis x1, . . . xr. We define basic commutators and

construct an ordering on the basic commutators inductively as follows:

• The basic commutators of weight 1 are the generators x1, . . . xr with xi < xj

for i < j.

32
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• The basic commutators of weight n ate the commutators c = [ci, cj] where ci

and cj are basic commutators with weights summing to n. These are ordered

lexicographically: if c = [ci, cj] and c
� = [c�

i
, c

�
j
] then c > c

� if ci > c
�
i
or if ci = c

�
i

and cj > c
�
j
.

By imposing the additional requirement that ci < cj if the weight of ci is less than

the weight of cj, we achieve an ordering of all basic commutators.

Above we have given a precise construction of a strict ordering on basic commu-

tators. While this ordering is consistent with Hall’s original definition of ordering on

basic commutators, he only insisted that the ordering be consistent with the partial

ordering given by the weights and allowed for arbitrary ordering of commutators of

the same weight. For our generalizations of the basis theorem, we find it advanta-

geous to work with the specific ordering given above. This specific ordering of basic

commutators has appeared before in [20].

To speak precisely about commutators and lower central series, we also introduce

some new terminology.

Definition 4.1. Let a1, . . . , an ∈ G. We define an n-bracketing of a1, . . . , an induc-

tively by

• The 1-bracketing of a1 is a1

• A n-bracketing of a1, . . . , an is any commutator [ck, cn−k] where ck is a k-

bracketing of a1, . . . , ak and cn−k is an (n− k)-bracketing of ak+1, . . . , an.

We call an element ai in an n-bracketing of a1, . . . , an an entry.
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Note that the definition of n-bracketing is not very restrictive. For example,

the commutators [[a1, a2], [a3, a4]], [[[a1, a2], a3], a4], and [a1, [a2, [a3, a4]]] are all 4-

bracketings of the entries a1, a2, a3, a4. Note that by the definition, any n-bracketing

is an element of Gn, but it is possible for an n-bracketing to lie in a deeper term of

the lower central series.

Given these definitions for commutators, we are now equipped to approach the

basis theorem.

Theorem 4.1 (Hall). If E is the free group with free generators x1, . . . , xr and if

in a sequence of basic commutators c1, . . . , ct are those of weight 1, 2, . . . , k then an

arbitrary element g of E has a unique representation

g = c
e1
1 · · · cet

t
mod Ek+1

The basic commutators of weight k form a basis for the free abelian group Ek/Ek+1.

Hall’s basis theorem applies only to lower central series quotients of finitely gen-

erated free groups. Below, we generalize the basis theorem to hold for lower central

series quotients of infinitely generated free groups.

Corollary 4.2. If E is the free group with free generators x1, x2, . . . and if in a

sequence of basic commutators {ci} are those of weight 1, 2, . . . , k then an arbitrary

element g of E has a unique representation

g =
�

c
ei
i

mod Ek+1

where ei = 0 for all but finitely many i. The basic commutators of weight k form a

basis for the free abelian group Ek/Ek+1.
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Proof. Let E(i) be the free group on x1, . . . , xi. Note that the natural inclusion

E(i) → E(j) for j > i sends basic commutators to basic commutators and respects

the ordering on basic commutators.

We first show that show that the map ιi,j : E(i) → E(j) induces an injection on

the lower central series quotients ιi,j : E(i)k/E(i)k+1 �→ E(j)k/E(j)k+1. Note that

H2(E(i),Q) = H2(E(i),Q) = 0, as the wedge of i or j circles is a K(G, 1) for E(i) or

E(j) respectively. Furthermore, ιi,j induces an injection H1(E(i),Q) → H1(E(j),Q).

By Proposition 2.4, ιi,j induces an injection ιi,j : E(i)k/E(i)k+1 �→ E(j)k/E(j)k+1

since free groups have the same rational lower central series and lower central series.

Let ιi : E(i) → E be the natural inclusion map sending xk �→ xk for k ≤ i. By an

analogous argument, ιi induces an injection ιi : E(i)k/E(i)k+1 �→ Ek/Ek+1.

Given this it is easily checked that {E(i)k/E(i)k+1, ιij} is a directed system of

groups. We will show that Ek/Ek+1 is the direct limit of this system. For this it

suffices to show that for a group G and maps fi : E(i)k/E(i)k+1 → G such that

fi = fj ◦ ιij, there exists a map f : Ek/Ek+1 → G such that f ◦ ιi = fi. For any

element x ∈ Ek/Ek+1, x can be written as a finite length word in the generators

x1, . . . . Hence x ∈ E(i)k/E(i)k+1 for some i. Define f(x) = fi(x). It is clear the

resulting map f is well defined and has the desired properties.

To prove the first statement of the theorem, let g ∈ E, then g ∈ E(i) for some i.

Hence in E(i) there is a unique representation for g as g = c
e1
1 · · · cett mod E(i)k+1.

As E(i)k ⊂ Ek, g = c
e1
1 · · · cett mod Ek+1 is a representation of g in the desired form

in E. Suppose there is another representation of this form, g = d
�1
1 · · · d�s

s
mod Ek+1.

There exists a j such that all of the basic commutators c1, . . . , ct, d1, . . . , ds ∈ E(j).
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Then by the basis theorem for finitely generated free groups these representations

must be the same.

To prove the second statement, note that as Ek/Ek+1 is a direct limit ofE(i)k/E(i)k+1,

it follows from the basis theorem for finitely generated free groups that the basic

commutators of weight k generate Ek/Ek+1. Furthermore, for any finite collection

of basic commutators of weight k c1, . . . , cm, there is some i such that c1, . . . , cm ∈

E(i)k/E(i)k+1. Hence all commutators of weight k are independent. Therefore the

basic commutators of weight k form a basis for Ek/Ek+1.

Lemma 4.2. Let G be a group and let a ∈ Gk. By the definition of the lower central

series, a is some n-bracketing of a1, . . . an where ai ∈ G, n ≤ k, and ai ∈ Gki where

�
n

i=1 ki = k. Let c1, . . . , cn be elements of G with ci ∈ Gki+1. Let a� be the commutator

a where each entry ai is replaced by ciai. Then a
� = ca for some c ∈ Gk+1

Proof. We prove this using strong induction. For the case k = 2, a = [ai1 , ai2 ]. Using

the commutator identities [ux, y] = u[x, y][u, y] and [x, vy] = [x, v] v[x, y] we can

perform the following computation:

a
� = [c1ai1 , c2ai2 ]

= c1[ai1 , c2ai2 ][c1, c2ai2 ]

= c1[ai1 , c2]
c2c1[ai1 , ai2 ][c1, c2ai2 ]

= c1[xi1 , c2]c2c1[ai1 , ai2 ]c
−1
1 c

−1
2 [c1, c2ai2 ]

= c1[ai1 , c2]c2c1
[ai1 ,ai2 ]

�
c
−1
1 c

−1
2 [c1, c2xi2 ]

�
[ai1 , ai2 ]
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Hence for c = c1[ai1 , c2]c2c1
[ai1 ,ai2 ]

�
c
−1
1 c

−1
2 [c1, c2ai2 ]

�
our base case holds.

For the inductive step, suppose a = [am, an] where am ∈ Gm, and an ∈ Gn. By the

inductive hypothesis, a�
m
= cmam where cm ∈ Gm+1 and a

�
n
= cnan where cn ∈ Gn+1

a
� = [a�

m
, a

�
n
]

= [cmam, cnan]

= cm[am, cnan][cm, cnan]

= cm[am, cn]
cncm[am, an][cm, cnan]

= cm[am, cn]cncm[am, an]c
−1
m
c
−1
n
[cm, cnan]

= cm[am, cn]cncm
[am,an]

�
c
−1
m
c
−1
n
[cm, cnan]

�
[am, an]

To finish the proof we must show that cm[am, cn]cncm [am,an] (c−1
m
c
−1
n
[cm, cnan]) is

an element of Gn+m+1. Note that [am, cn] ∈ Gm+n+1, and so any conjugate is also in

Em+n+1. We simplify the above expression as modulo Gm+n+1 as follows:

cm[am, cn]cncm
[am,an]

�
c
−1
m
c
−1
n
[cm, cnan]

�
= cncm

[am,an]
�
c
−1
m
c
−1
n
cmcnanc

−1
m
a
−1
n
c
−1
n

�

= cncm
[am,an]

�
[c−1

m
, c

−1
n
]anc

−1
m
a
−1
n
c
−1
n

�

= cncm
[am,an]

�
[c−1

m
, c

−1
n
][anc

−1
m
](cncm)

−1
�

= cncm[am, an][c
−1
m
, c

−1
n
][anc

−1
m
](cncm)

−1[am, an]
−1

As [am, an] ∈ Gm+n, it is in the center of G/Gm+n+1. Also note that the commutators

[c−1
m
, c

−1
n
] and [an, c−1

m
] are elements of Gn+m+1. Thus modulo Gn+m+1 the expression
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reduces further to:

cm[am, cn]cncm
[am,an]

�
c
−1
m
c
−1
n
[cm, cnan]

�
= cncm[am, an][c

−1
m
, c

−1
n
][anc

−1
m
](cncm)

−1[am, an]
−1

= cncm[am, an](cncm)
−1[am, an]

−1

= 1

Hence for c = cm[am, cn]cncm [am,an] (c−1
m
c
−1
n
[cm, cnan]) our induction holds.

Corollary 4.3. Commutators in Gk
Gk+1

are linear in each entry. In other words, given

a, b, c ∈ G. If C ∈ Gk
Gk+1

be an n-bracketing with [ab, c] as an entry. Let C � be the

commutator obtained by replacing the entry [ab, c] with [a, c][b, c]. Then C = C
�. In

addition, if C ∈ Gk
Gk+1

with an entry [a, bc] and C
� is the commutator obtained by

replacing the entry [a, bc] with [a, b][a, c], then C = C
�.

Proof. We will prove the first identity. The proof of the second is analogous.

In any group we have the identity

[ab, c] = a[b, c][a, c]

= [a, c] [c,a]a[b, c]

= [a, c][ [c,a]a
b,

[c,a]a
c].

Let b ∈ Gkb
and c ∈ Gkc . Note that the elements b and [c,a]a

b share the same class

in G/Gkb+1. Similarly, the elements c and [c,a]a
c share the same class in G/Gkc+1.

The result follows immediately from Lemma 4.2.

Corollary 4.4. Let E be the free group with free generators x1, x2, . . . . Let x̄1, x̄2, . . .

be the classes of x1, x2, . . . in E/E
�. Consider the basic commutators c̄i of weights
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1, 2, . . . , k in elements x̄1, x̄2, . . . defined in the same fashion as before (inductively

from the ordering x̄1 < x̄2 < . . . ). An arbitrary element g of E has a unique repre-

sentation

g = c̄1
e1 · · · c̄tet mod Ek+1

The basic commutators of weight k form a basis for the free abelian group Ek/Ek+1.

Proof. By Lemma 4.2, the representation g = c1
e1 · · · ctet mod Ek+1 is unchanged

by sending xi to another element in the same homology class. It follows that g =

c̄1
e1 · · · c̄tet mod Ek+1 is a well defined representation of g. The remaining state-

ments follow directly from Corollary 4.2.

The following proposition establishes a relationship between bases for the lower

central series quotients E(n)k
E(n)k+1

and E(n−1)k
E(n−1)k+1

.

Proposition 4.3. Let E(n − 1) be the free group on {x1, . . . , xn−1} and let E(n) be

the free group on {x1, . . . , xn}. Let π : E(n) → E(n− 1) ∼= E(n)/�xn� be the natural

quotient map. The kernel of the induced map

π :
E(n)k
E(n)k+1

→ E(n− 1)k
E(n− 1)k+1

is generated by weight k basic commutators which have xn as an entry.

Proof. Let K be the subgroup of E(n)k
E(n)k+1

generated by basic commutators which have

xn as an entry. We show K = ker π. First, consider a basic commutator c of weight

k which has xn as an entry. We show that π(c) = 1 using strong induction.
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In the first case we consider a weight 2 basic commutator. Suppose c = [xi, xn] or

c = [xn, xi] for some xi. Then

π(c) = [π(xi), π(xn)]

= [xi, π(xn)]

= 1.

and similarly for c = [xn, xi]

Suppose for induction that for all commutators c of weight less than k, that

π(c) = 1. Let c be a weight k basic commutator with xn as an entry. Then c = [c1, c2]

where c1 and c2 are basic commutators of weight ≤ k − 1. Either c1 or c2 must have

xn as an entry. If c1 has xn as an entry then

π(c) = [π(c1), π(c2)]

= [1, π(c2)]

= 1

and similarly if c2 has xn as an entry. Thus K ⊂ ker π.

To show the opposite inclusion, let ι : E(n− 1) → E(n) be the natural inclusion

map. This map induces a monomorphism ι : E(n−1)k
E(n−1)k+1

→ E(n)k
E(n)k+1

. Furthermore as π ◦ ι

is the identity map, π is a retract.

E(n− 1)k
E(n− 1)k+1

ι→ E(n)k
E(n)k+1

π→ E(n− 1)k
E(n− 1)k+1

Suppose c ∈ E(n)k
E(n)k+1

and c /∈ K. Then by the basis theorem c can be written as a prod-

uct of basic commutators c1, . . . , cm in the generators {x1, . . . , xn}. In this product
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there is some set of basic commutators {ci|i ∈ A} for which ci /∈ K. Then by defini-

tion of K, for each i ∈ A, ci is a basic commutator in the generators {x1, . . . , xn−1}.

Thus for each i ∈ A, ci ∈ im ι and the product of these basic commutators
�

i∈A ci is

nontrivial. Then as π(ci) = ci for each i ∈ A and π(ci) = 1 for i /∈ A, it follows that

π(c) =
�

i∈A ci. Hence c /∈ ker π. Therefore, K = ker π, as desired.

4.2 Module structure of the lower central series

quotients

The first result in this section provides a homology basis for the commutator subgroup

of a free group E
�. An equivalent set was shown to be a basis in [1]. We provide an

original proof here for completeness.

Lemma 4.4. Let E = E(x1, . . . , xn) be a free group on {x1, . . . , xn}. Let

B = { wi,j[xi, xj]|i < j, wi,j ∈ Im (H1 (E(x1, . . . , xj)) �→ H1(E))}. Then B is a ba-

sis for H1 (E �
,Z).

Proof. To show B is a basis for H1(E) we must show that B generates the homology

of E, and also that there are no relations among the elements of B. We first show

that B generates.

The set B
� = {[xi, xj]w|i < j, w ∈ H1(E)} is a clear generating set for H1(E �).

Hence to show that B is a generating set it suffices to show that any element of B�

can be written as a linear combination of elements of B. Any element w of H1(E)

can be written as a product w = x
m1
1 · · · xmn

n
, and hence a general element b

� of B�



42

takes the form b
� = x

m1
1 ···xmn

n [xi, xj]. Note that if ml = 0 for all l with j < l ≤ n, then

b
� ∈ B. For k > j we may express x

±1
k [xi, xj] as follows:

xk[xi, xj] = [xi, xj] + [xj, xk]− xi[xj, xk]− [xi, xk] +
xj[xi, xk]

x
−1
k [xi, xj] = [xi, xj] +

x
−1
k [xj, xk] +

x
−1
k xi[xj, xk] +

x
−1
k [xi, xk] +

x
−1
k xj[xi, xk].

Note that both expressions above are linear combinations of elements of B. Given

the above, we can express vx
±1
k [xi, xj] as follows:

vxk[xi, xj] = v[xi, xj] +
v[xj, xk] +

vxi[xj, xk] +
v[xi, xk] +

vxj[xi, xk]

vx
−1
k [xi, xj] = v[xi, xj] +

vx
−1
k [xj, xk] +

vx
−1
k xi[xj, xk] +

vx
−1
k [xi, xk] +

vx
−1
k xj[xi, xk].

Thus by induction, any element of B� can be expressed as a linear combination of

elements of B. Hence B is a generating set for H1(E �).

To show that there are no relations among the elements of B we will employ

the following map. Let X be the wedge of n circles and let �X denote the universal

abelian cover of X. Note that π1(X) = E. Thus π1

�
�X
�
= E

� and H1

�
�X
�
= H1(E �).

Let v be the vertex of X. Then by the long exact sequence of a pair we have that

i : H1(E �) �→ H1

�
�X, ṽ

�
, where the i is induced by the natural inclusion. Note that

H1

�
�X, ṽ

�
can be identified with the free ZΛ module with basis (x1, . . . , xn) where Λ

is the free abelian group on the basis (y1, . . . yn).

Consider a linear combination
�

ai,j(k) wi,j(k)[xi, xj] of elements of B that is 0

in H1(E). By looking at the geometry of the inclusion �X →
�
�X, ṽ

�
we see that

i
��

ai,j(k) wi,j(k)[xi, xj]
�
=

�
ai,j(k)wi,j(k) ((1− yj)xi + (yi − 1)xj). We define up-
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per and lower bounds on the height of xi in the yj direction as follows:

Ui,j = max
k

{mj|wi,j(k) = y
m1
1 · · · ymj

n
, ai,j(k) �= 0}

Li,j = min
k

{mj|wi,j(k) = y
m1
1 · · · ymj

n
, ai,j(k) �= 0}

As the expression
�

ai,j(k)wi,j(k) ((1− yj)xi + (yi − 1)xj) has finitely many ai,j(k) �=

0 for each pair i, j, if there is ai,j(k) �= 0 for some k, then there must exist words

wi,j(k∗) and wi,j(k∗) such that

wi,j(k
∗) = y

m1
1 · · · ymj−1

j−1 y
Ui,j

j

wi,j(k∗) = y
m1
1 · · · ymj−1

j−1 y
Li,j

j

and with ai,j(k∗) and ai,j(k∗) nonzero.

Note that the only parts of the sum
�

ai,j(k)wi,j(k) ((1− yj)xi + (yi − 1)xj) con-

taining x1 terms are of the form a1,j(k)w1,j(k)(1 − yj)x1. Suppose that a1,n(k) �= 0

for some k. Consider the −a1,n(k∗)w1,n(k∗)ynx1 summand of the above expression,

�
ai,j(k)wi,j(k) ((1− yj)xi + (yi − 1)xj). By assumption, the summation

�
ai,j(k)wi,j(k) ((1− yj)xi + (yi − 1)xj) = 0.

Suppose that w
�
1,n(k

∗) is another word achieving the upper bound U1,n. Then

w1,n(k∗) = y
m1
1 · · · ymn−1

j−1 y
U1,n

j
and w

�
1,n(k

∗) = y
m

�
1

1 · · · ym
�
n−1

j−1 y
U1,n

j
where mi �= m

�
i
for

some i < n. Hence the term corresponding to w
�
1,n(k

∗), a�1,n(k∗)w�
1,n(k

∗)(1−yn)x1 can

have no interaction with −a1,n(k∗)w1,n(k∗)ynx1. The same holds for words w1,n(k)

which do not achieve the upper bound Ui,j.

Note that by definition of our proposed basis w1,j(k) is an element of the free
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abelian group generated by y1, . . . , yj. Hence for j �= n, w1,n(k∗)ynx1 �= w1,j(k)x1

unless U1,n = −1.

Similarly, we may consider the a1,n(k∗)w1,n(k∗)x1 summand of the above ex-

pression,
�

ai,j(k)wi,j(k) ((1− yj)xi + (yi − 1)xj). By an analogous argument, for

w1,n(k)x1 �= w1,n(k∗)x1 and for j �= n, w1,n(k∗)x1 �= w1,j(k)x1 unless L1,n = 0.

By definition of our upper and lower bounds, U1,n and L1,n, U1,n ≥ L1,n, and hence

we cannot have −1 = U1,n < L1,n = 0. Thus a1,n(k) = 0 for all k.

The key to concluding that a1,n(k) = 0 was the fact that for j �= n,

w1,n(k∗)ynx1 �= w1,j(k)x1, and w1,n(k∗)x1 �= w1,j(k)x1 as the powers of yn in w1,j(k)

are zero. Now that we have concluded a1,n(k) = 0 we can make some similar state-

ments about the height of x1 in the yn−1 direction: w1,n−1(k∗)yn−1x1 �= w1,j(k)x1,

and w1,n−1(k∗)x1 �= w1,j(k)x1. Since there are no nonzero a1,n(k), the only terms

with nonzero powers of yn−1 now come from the w1,n−1 terms. We make this concept

precise via a descending induction on the index j.

Suppose that the coefficients a1,l(k) = 0 for all l > p. Suppose that

a1,p(k) �= 0 for some k. Consider the −a1,p(k∗)w1,p(k∗)ypx1 summand of

�
ai,j(k)wi,j(k) ((1− yj)xi + (yi − 1)xj). By definition of our proposed basis w1,j(k)

is an element of the free abelian group generated by y1, . . . , yj. Since there are no

terms with j > p, for j �= p, w1,p(k∗)ypx1 �= w1,j(k)x1 unless U1,p = −1. As our sum

is zero, the w1,p(k∗)ypx1 term must be zero. Since the only contribution to this term

is the −a1,p coefficient, it follows that U1,p = −1.

Similarly, we may consider the a1,p(k∗)w1,p(k∗)x1 summand of the sum,

�
ai,j(k)wi,j(k) ((1− yj)xi + (yi − 1)xj). As there are no terms with j > p, for j �= p,
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w1,p(k∗)x1 �= w1,j(k)x1 unless L1,p = 0. As our sum is zero, the w1,p(k∗)ypx1 term must

be zero. Since the only contribution to this term is the a1,p coefficient, it follows that

L1,p = 0. By definition of our upper and lower bounds, U1,p and L1,p, U1,p ≥ L1,p, and

hence we cannot have −1 = U1,p < L1,p = 0. Thus a1,p(k) = 0 for all k. Hence by our

induction, a1,j(k) = 0 for all j and all k.

Since a1,j(k) = 0, x2 now plays the role of x1, and hence we can make the conclu-

sion that a2,j(k) = 0. We make this precise by an induction on the index i.

Suppose that al,j(k) = 0 for all j and for all l < p. Then the only xp terms

come from the ap,j(k)(1−yj)xp summands of
�

ai,j(k)wi,j(k) ((1− yj)xi + (yi − 1)xj).

Thus we can repeat the above induction on the index j to conclude that ap,j(k) = 0

for all j and k. Hence ai,j(k) = 0 for all i, j and k.

Thus we have shown that for a linear combination
�

ai,j(k) wi,j(k)[xi, xj] of ele-

ments of B that is 0 in H1(E), all ai,j(k) = 0. Thus there are no relations in the

among the elements in the set B.

As B generates H1(E �) and has no relations, B is a basis for H1(E �).

Lemma 4.5. The module
E

�
k

E
�
k+1

has no Z
�
E

E�

�
torsion of the form (1−xi)ω = 0, where

xi is a generator for E.

Proof. Consider the homology basis B for E
� given by Lemma 4.4. Note that the

set of basis elements, B, maps to itself under conjugation by x1. Given an element

ω ∈ E
�
k

E
�
k+1

, by Corollary 4.4, ω can be written as a product ω =
�

m

i=1 c
αi
i

where ci are

basic commutators in the elements of H1(F �) and ci < ci+1 for all i.
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As in the proof of Lemma 4.4, let X be the wedge of n circles and let �X denote

the universal abelian cover of X. Note that π1(X) = E. Thus π1

�
�X
�

= E
� and

H1

�
�X
�
= H1(E �). Let v be the vertex of X. Then by the long exact sequence of

a pair we have that i : H1(E �) �→ H1

�
�X, ṽ

�
, where the i is induced by the natural

inclusion. The universal abelian cover, X̃, is a 1-complex taking the form of a square

grid with a dimension corresponding to each generator. The vertices of this grid can

be labeled by a vector (a1, a2, . . . , an) where ai denotes the distance of the vertex in

the xi direction. These vertices can be ordered by the dictionary order. That is, if

v = (a1, . . . , an) and v
� = (a�1, . . . , a

�
n
) then v < v

� if a1 < a
�
1 or ai = a

�
i
for all i < j

and aj < a
�
j
.

Any edge in the lattice can then be written as an ordered pair of vertices, e =

(v1, v2) with v1 < v2. The edges then inherit a strict ordering by the dictionary order

on the weighted vertices. That is, if e = (v1, v2) and e
� = (v�1, v

�
2) then e < e

� if v1 < v
�
1

or if v1 = v
�
1 and v2 < v

�
2.

Any basis element of H1(E �) (in the basis described in Lemma 4.4) can be written

as a finite sum of edges, c =
�

l

i=1 biei where ei ≤ ei+1. Thus the weighting on

oriented edges of E � induces an ordering on basis elements of the homology of E � by

the dictionary order in the same way. We may represent any element c as a vector

(b1, b2, · · · ) where bi is the coefficient of the edge ei. Note that by construction, such

a vector has finitely many nonzero entries. For c = (b1, . . . ) and c
� = (b�1, . . . ) then

c < c
� if b1 < b

�
1 or bi = b

�
i
for all i < j and bj < b

�
j
. In this manner we obtain a

strict ordering on basis elements of H1(E). We can use this ordering of our homology

basis to construct our basic commutators as in the basis theorem. Conjugating by
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x1 preserves the ordering on homology elements of E � as it preserves the ordering on

vertices. Hence since B is invariant under conjugation by x1, each basic commutator

ci in the product ω =
�

m

i=1 c
αi
i

where ci is sent to another basic commutator in the

elements of B, c�
i
. As the ordering on elements of B is preserved under the conjugation

by x1, the c
�
i
also satisfy c

�
i
< c

�
i+1.

Hence by Corollary 4.4, x1 · ω can be written uniquely by the basis theorem as

x1 ·ω =
�

m

i=1 c
�αi
i
, where c�

i
= x1ci. Note that ω �= x1 ·ω as c1 �= c

�
1 and thus the unique

expressions of ω and x1ω have distinct least commutators. Thus (1− x1)ω �= 0.

The result that (1−xi)ω �= 0 for any i can be obtained by reordering the generators

of E such that xi plays the role of x1.

Note that (1 − x1)(1 − x2)ω �= 0 is equivalent to the statement that the map

·(1− x1)(1− x2) :
E

�
k

E
�
k+1

→ E
�
k

E
�
k+1

is injective. Hence if ω �= ω
� then (1− x1)(1− x2)ω �=

(1 − x1)(1 − x2)ω�. This fact will be employed in future Magnus homomorphism

computations.



Chapter 5

Main Results

In this chapter we investigate properties of the higher-order Magnus subgroups. Sec-

tion 5.1 develops a way of obtaining mapping classes in Mk(S) from those in Jk(D)

and shows these mapping classes to be nontrivial. Given that it is known that Jk(D) is

nontrivial for all k, this shows that the higher dimensional analog Mk(S) is nontrivial

for all k for genus ≥ 3. In Section 5.2 we seek to strengthen this result. We will show

that the Magnus homomorphisms are nontrivial on Mk(S) given some conditions on

τk(Jk(D)). Using these Magnus homomorphism computations we will exhibit a sub-

group of Mk
Mk+1

isomorphic to a lower central series quotient of free groups. Finally, in

Section 5.3 we will show that Mk(S)
Mk+1(S)

is infinite rank for all k.

5.1 Constructing elements of Mk via subsurfaces

Let S be a surface with genus g ≥ 2 and 1 boundary component. Let D be a sphere

with n disks removed, n ≥ 3. We work to relate Johnson filtration on D to the

48
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Magnus filtration on S by considering separating embeddings of D in S.

Definition 5.1. Let D have boundary components b0, . . . , bn. The map i : D → S is

a separating embedding if i is an embedding such that i(b1), . . . , i(bn) are separating

curves in S and i(b0) is either a separating curve in S or is the boundary component

of S.

. . .

. . .

Figure 5.1: To obtain examples of f � ∈ Mk(S) from f ∈ Jk(D), we embed the disk,

D into S such that each boundary component of D is either separating in S or is the

boundary component of S. The above illustrates a possible separating embedding of

Dg in Sg.

We first develop a relationship between the Johnson subgroups on a disk and the

Magnus subgroups on a larger surface. For this we will employ a specific basis for F

that is compatible with the arcs which generate H1(D, ∂D). Let ∗ be a basepoint for

F = π1(S) located on the boundary of S. Let Ai be arcs connecting the ith boundary

component to p0 as in Definition 2.3. Let pi be the terminal point of Ai. As the

boundary components of i(D) are separating in S, S \D is a disjoint union of at most

n + 2 surfaces, one of which is i(D). Let us denote the other surfaces Σ0, . . . ,Σn,
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with Σ0 chosen such that Σ0 contains the boundary component of S (note that if i

maps a boundary component of D to the boundary component of S, Σ0 is empty).

Let Σi have genus gi. Then π1(Σi, pi) has a basis consisting of 2gi loops (given the

extra boundary component, Σ0 will have a basis of 2g0 + 1 loops, but we will only

consider the 2g0 loops which form a basis for the capped off surface). By the Seifert

Van Kampen theorem, we can combine these bases to form a basis for F as follows:

Let C be an arc joining ∗ to p0. The elements of our basis for S are the homotopy

classes of the loops CAiβAi C (or CβC for i = 0) where β is a generator of π1(Σi, pi).

This basis is illustrated in Figure 5.2 below. We denote the elements of this basis

{α1, γ1, . . . , αg, γg} where the curves αg0+···+gi−1+1, γg0+···+gi−1+1, . . . , αg0+···+gi , γg0+···+gi

are those basis elements produced by the generators of π1(Σi, pi).

Lemma 5.1. Let i : D → S be a separating embedding. Let [f ] ∈ Mod(D) and let

f be a representative homeomorphism of [f ]. Let f � : S → S be the homeomorphism

defined by

f
�(x) =






i(f(y)) x = i(y)

x x ∈ S \ i(D)

then if [f ] ∈ Jk(D), [f �] ∈ Mk(S).

Proof. Choose an ordering of the boundary components of D, points pi on these

boundary components and arcs Ai as in Definition 2.3 such that the boundary com-

ponent of S is contained in the component of S \ inti(D) containing the 0th boundary

component of D. Let ∗ be a basepoint for π1(S) which lies on ∂S and let c be an arc

parametrized on [0, 1] such that c(0) = ∗ and c(1) = p0 ∈ ∂D. By construction of

our basis for π1(S, ∗) in which each generator can be represented by a loop α which is
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∗

p0

p0

p1p1

p2

p2

pnpn

...

. . .

...

. . .

. . .

αg0

α1

γ1

γg0

γg0+1γg0+g1

αg0+1αg0+g1

γg0+g1+1

γg0+g1+g2

αg0+g1+1

αg0+g1+g2

γg0+···+gn−1+1 γg

αg0+···+gn−1+1 αg

A2

A1 An

C

Figure 5.2: Pictured above is the chosen basis {α1, γ1, . . . , αg, γg} of F , obtained by

connecting the bases for π1(Σi, pi) to the basepoint ∗ via the arcs Ai.

either disjoint from i(D), or is of the form α = CAiβAi C with β a loop intersecting

i(D) only at its initial and terminal points.

For α disjoint from i(D), f �
∗(α) = α and thus f �

∗(α)α
−1 = 1 is trivially contained

in Fk.

For α = CAiβAi C we can perform the following computation.
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f
�(α)α � f

�(CAiβAi C)(CAiβAi C)

� f
�(C)f �(Ai)f

�(β)f �(Ai)f
�(C)CAiβ Ai C

� C i(f(Ai))β i(f(Ai))CCAiβ Ai C

�
�
C i(f(Ai))Ai C

� �
CAiβAi C

� �
CAii(f(Ai))C

� �
Cβ Ai C

�

� i∗
�
f(Ai)Ai

� �
CAiβAi C

�
i∗
�
Aif(Ai)

� �
Cβ Ai C

�

Note that
�
f(Ai)Ai

�−1
= Aif(Ai). As f ∈ Jk(D), both Aif(Ai) and f(Ai)Ai are

contained in π1(D)k. Each boundary curve of i(D) is the boundary of a subsurface

of S and hence is contained in [F, F ]. Since π1(D) is generated by the boundary

curves of D, it follows that i∗(π1(D)) ⊂ F
�, and hence i∗(π1(D)k) ⊂ F

�
k
. Hence both

i∗(Aif(Ai)) and i∗(f(Ai)Ai) are contained in F
�
k
. Considering the above expression

modulo F
�
k
we then achieve the following.

f
�(α)α−1 = CAiβAi CCAiβAi C mod F

�
k

= αα
−1 = 1 mod F

�
k

Therefore f
� ∈ Mk(S).

Lemma 5.1 allows us to construct numerous examples of elements of Mk(S) by

extending homeomorphisms in Jk of embedded disks.

Proposition 5.2. Let i : D → S be a separating embedding. The map i
� : Mod(D) →

Mod(S) given by i
�([f ]) = [f �] is an injective homomorphism. This map induces a
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homomorphism

i :
Jk(D)

Jk+1(D)
→ Mk(S)

Mk+1(S)
.

Proof. We begin by showing that i
� is multiplicative. Consider maps [f1], [f2] ∈

Mod(D) and let f1, f2 be corresponding homeomorphisms. Clearly as elements of

Mod(D), [f1][f2] = [f1f2]. The composition f1f2 is a representative of the class

[f1f2]. We then have:

i
� ([f1][f2]) = i

� ([f1f2])

= [(f1f2)
�] .

Note that by definition (f1f2)� is the homeomorphism S → S which extends f1f2 by

the identity. We then have that (f1f2)� = f
�
1f

�
2. By definition of multiplication in

Mod(S), [f �
1f

�
2] = [f �

1][f
�
2]. Thus,

i
� ([f1][f2]) = [(f1f2)

�]

= [f �
1f

�
2]

= [f �
1][f

�
2]

= i
� ([f1]) i

� ([f2])

Thus i� is multiplicative.

To show that i� is injective, it then suffices to show that ker i� = 1. This amounts

to showing that beginning with a nontrivial mapping class f ∈ Mk(D), the resulting

mapping class f
� ∈ Mk(S) is necessarily nontrivial. As no boundary component of
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D is nullhomotopic in S, this follows directly from [5] Theorem 3.18. Hence i
� is a

monomorphism.

We now address the second part of the proposition: that i� induces a homomor-

phism i : Jk(D)
Jk+1(D) →

Mk(S)
Mk+1(S)

. By Lemma 5.1 i
�(Jk+1(D)) ⊂ Mk+1(S). Thus the map i

is well defined. It is clearly a homomorphism as i� is a homomorphism. This completes

the proof.

5.2 Magnus homomorphism computations

Having developed a relationship between Johnson subgroups on D and Magnus sub-

groups on S, we now seek to relate the Johnson homomorphisms on D to the Magnus

homomorphisms on S. To do this we must first examine the relationship between the

lower central series quotients of π1(D) and F
�.

Let G denote the fundamental group of D, the disk with n holes, and let yi be

the generators of G obtained by traveling along arc Ai, circling the corresponding

boundary component in a counterclockwise direction, and returning to the basepoint

along Ai as shown in Figure 5.3.

Lemma 5.3. Let i : D → S be a separating embedding. The induced map

i∗ :
Gk

Gk+1
→ F

�
k

F
�
k+1

is injective.

Proof. To show that the above map is an injection, we will employ Proposition 2.4.

Hence we must show that the homomorphism i∗ : G → F
� given by yi �→ [αi, γi]

induces an injection H1(G;Q) → H1(F �;Q). As G/G
� and F

�
/F

�� are torsion free

abelian groups, it suffices to show there is an injection H1(G;Z) → H1(F �;Z). Note
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An

yn

. . .

A2A1

y1 y2

Figure 5.3: Pictured above are the generators yi of G. A generator yi is obtained by

traveling along arc Ai, circling the corresponding boundary component in a counter-

clockwise direction, and returning to the basepoint along Ai.

that by our previous construction of the basis for F �,

i∗(yi) =
�
αg0+···+gi−1+1, γg0+···+gi−1+1

�
· · · [αg0+···+gi , γg0+···+gi ] .

Consider an element
�

niyi which is nonzero in G/G
�. We compute the image of this

element by i∗ as follows:

i∗

��
niyi

�
=

�
nii∗(yi)

=
�

ni

�
αg0+···+gi−1+1, γg0+···+gi−1+1

�
· · · [αg0+···+gi , γg0+···+gi ]

Because
�

niyi �= 0, nj �= 0 for some j. Consider the map gj which maps S to the

punctured surface as shown in Figure 5.4.
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i(bn)

i(b0)

i(b1)
i(b2) i(bj)

. . . . . .

...
...

...
...

. . .

gj

p1 p2 pn
. . .

...

. . .

. . .

Figure 5.4: Pictured above is the continuous map gj : S → T . Everything above and

including the curve i(bi) for i �= j is collapsed to a point pi.

We find that

gj∗i∗

��
niyi

�
=

�
nii∗(yi)

= gj∗

��
ni

�
αg0+···+gi−1+1, γg0+···+gi−1+1

�
· · · [αg0+···+gi , γg0+···+gi ]

�

=
�

nigj∗
��
αg0+···+gi−1+1, γg0+···+gi−1+1

�
· · · [αg0+···+gi , γg0+···+gi ]

�

= nj

�
gj∗(αg0+···+gj−1+1), gj∗(γg0+···+gj−1+1)

�

· · ·
�
gj∗(αg0+···+gj), gj∗(γg0+···+gj)

�
.
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Clearly nj

�
gj∗(αg0+···+gj−1+1), gj∗(γg0+···+gj−1+1)

�
· · ·

�
gj∗(αg0+···+gj), gj∗(γg0+···+gj)

�
�= 0

in H1(T ). Hence i∗(
�

niyi) �= 0.

Let f � : S → S be constructed by taking a map f in Jk(D) and extending it to

the whole surface by the identity, as in Lemma 5.1. We relate the τk(f) and τ
�
k
(f �) in

the following lemma.

Lemma 5.4. Let S be a surface with genus g ≥ 2 and 1 boundary component. Let D

be a sphere with n disks removed, n ≥ 3. Let i : D → S be a separating embedding. Let

f ∈ Jk(D) with τk(f)(Ai) = wi ∈ π1(D)k/π1(D)k+1 and let f � = i
�(f) be the element of

Mod(S) given by Lemma 5.1. Let γi and γj be elements of F that intersect i(D) along

the arcs Ai and Aj respectively. Then τ
�
k
(f �)[γi, γj] = (1−γi)(1−γj) (i∗(wi)− i∗(wj)).

Furthermore, if wi �= wj as elements of π1(D)k/π1(D)k+1 for some choice of i, j then

τ
�
k
(f �) �= 0.

Proof. Let wi = τk(f)(Ai). We wish to show that τ
�
k
(f �)[γi, γj] �= 0. We begin by

computing τ
�
k
(f �)([γi, γj]). By construction, γi = CAiβiAi C for some loop βi in S \D
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by our construction of the basis for F . Then by definition

τ
�
k
(f �)([γi, γj]) = f

�([γi, γj])[γj, γi]

= [f �(γi), f
�(γj)][γj, γi]

= [f �(CAiβiAi C), f �(CAjβjAjC)][γj, γi]

= [C if(Ai)βiif(Ai)C,C if(Aj)βjif(Aj)C][γj, γi]

= [C if(Ai)βiif(Ai)C,C if(Aj)βjif(Aj)C][γj, γi]

=
�
C i

�
f(Ai)Ai

�
AiβiAii

�
Aif(Ai)

�
C,

C i
�
f(Aj)Aj

�
AjβjAji

�
Ajf(Aj)

�
C

�
[γj, γi]

=
��
C i

�
f(Ai)Ai

�
C
� �

CAiβiAi C
� �

C i

�
Aif(Ai)

�
C

�
,

�
C i

�
f(Aj)Aj

�
C
� �

CAjβjAjC
� �

Ci

�
Ajf(Aj)

�
C

��
[γj, γi].

Note that i∗ : π1(D, p0) → π1(S, i(p0)). Allowing a change of basepoint from

π1(S, i(p0)) to π1(S, ∗) = F , we may further reduce this expression as follows:

τ
�
k
(f �)([γi, γj]) = [i∗(wi)γii∗(w

−1
i
), i∗(wj)γji∗(w

−1
j
)][γj, γj]

= [[i∗(wi), γi]γi, [i∗(wj), γj]γj][γj, γi]

Using the commutator identities [ga, b] = g[a, b][g, b] and [a, hb] = [a, h] h[a, b] it

is possible to reduce this expression to the following:

τ
�
k
(f �)([γi, γj]) =

[i∗(wi),γi][γi, [i∗(wj), γj]]
[i∗(wi),γi][i∗(wj),γj ][γi, γj][[i∗(wi), γi], [i∗(wj), γj]]

[i∗(wj),γj ][[i∗(wi), γi], γj][γj, γi].
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As i∗(G) ⊂ F
� and wi, wj ∈ Gk, i∗(wi), i∗(wj) ∈ F

�
k
. Thus the commutators

[i∗(wi), γi], [i∗(wj), γj] are elements of F �
k
and hence the conjugation in our expression

is trivial modulo F
�
k+1. In addition [[i∗(wi), γi], [i∗(wj), γj]] ∈ F

�
k+1. Thus reducing

mod F
�
k+1 we obtain:

τ
�
k
(f �)([γi, γj]) = [γi, [i∗(wj), γj]][γi, γj][[i∗(wi), γi], γj][γj, γi]

= [γi, [i∗(wj), γj]][[i∗(wi), γi], γj]

Equivalently, viewing the τ
�
k
(f �)([γi, γj]) as an element of the Z[F/F �] module we

can represent it as follows:

τ
�
k
(f �)[γi, γj] = (1− γi)(1− γj) (i∗(wi)− i∗(wj))

where (1− γi), (1− γj) ∈ Z[F/F ] and i∗(wi), i∗(wj) ∈ F
�
k
/F

�
k+1. This proves the first

statement of the lemma.

To prove that wiw
−1
j

�= 0 shows τ �
k
(f �) �= 0, we find it advantageous to express the

above computation as follows:

τ
�
k
(f �)[γi, γj] = (1− γi)(1− γj)

�
i∗(wiw

−1
j
)
�
.

By Lemma 4.5, τ �
k
(f �)[γi, γj] is nonzero provided that i∗(wiw

−1
j
) is nontrivial. This

follows directly from Lemma 5.3.

Let Dn be the disk with n holes and let G(n) = π1(Dn). Let E(n) denote the free

group generated by x1, x2, . . . , xn. Let P (n) denote the pure braid group on n strands.

Consider the inclusion ι : E(n− 1) → P (n) obtained by mapping the generator xi of
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E(n− 1) = �x1, . . . , xn−1� by xi �→ Ai,n where Ai,n is the generator of the pure braid

group which clasps strands i and n [2] as shown in Figure 5.5.

Forgetting to fix the boundary components in the interior of the disk, any mapping

class in Mod(D) is isotopic to the identity. The trace of this isotopy permutes the

boundary components on the interior of the disk to generate a pure braid. This

correspondence is an isomorphism between P (n) and Mod(Dn). We denote this

natural map ψ : P (n) → Mod(Dn). In particular it is important to note that the

pure braid generator Ai,n yields a mapping class fi,n on Dn given by a single dehn

twist (twisting right) around the i
th and n

th punctures as shown in Figure 5.5. Note

1 · · · i i+ 1 · · · n

1 · · · i i+ 1 · · · n

Figure 5.5: Left: The generator Ai,n of the pure braid group. Right: The Dehn twist

fi,n corresponding to Ai,n

that as function composition is written right to left, the map ψ acts by reversing the

order of pure braid generators: ψ(A�1
p1,n

· · ·A�m
pm,n

) = f
�m
pm,n

· · · f �1
p1,n

.

For a mapping class f ∈ Mod(Dn), let φi(f) be given by φi(f) = f(Ai)Ai.

Lemma 5.5. The map θ : E(n− 1) → G(n− 1) given by the composition of maps

E(n− 1)
ι

�→ P (n)
ψ

�→ Mod(Dn)
φn→ G(n)

π→ G(n− 1)
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is the isomorphism induced by mapping xi �→ yi.

The map µ : E(n− 1) → G(n− 1) given by the composition of maps

E(n− 1)
ι

�→ P (n)
ψ

�→ Mod(Dn)
φ1→ G(n) → G(n− 1)

is the homomorphism given by v �→ y
η

1 where η is the sum of the x1 exponents in v.

Proof. To show this it suffices to trace v ∈ E(n− 1) through the above maps. By the

above definitions it is clear that for v = x
�1
p1
· · · x�m

pm
that (ψ ◦ ι) (v) = f

�m
pm,n

· · · f �1
p1,n

.

Let (ψ ◦ ι) (v) = f .

To compute φn(f) and φ1(f) we examine the image of the arcs A1 and An, and

the generators of G(n) under a map fi,n. By direct computation we find that:

fi,n(A1) �






A1 if 1 < i

yny1A1 if i = 1

fi,n(An) � ynyiAn

fi,n(yn) � ynyiyny
−1
i
y
−1
n

� yn[yi, yn]

fi,n(yi) � ynyiy
−1
n

� yi[y
−1
i
, yn]

fi,n(yj) �






[yi, yn]−1
yj[yi, yn] if i < j, j �= g

yj if i > j

Similarly, we can compute the image of the arcs A1 and An, and the generators of

G(n) under the map f
−1
i,n

, the left handed Dehn twist about the same simple closed

curve.
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f
−1
i,n

(A1) �






A1 if 1 < i

y
−1
1 y

−1
n
A1 if i = 1

f
−1
i,n

(An) � y
−1
i
y
−1
n
An

f
−1
i,n

(yn) � yiy
−1
n
ynynyi � [y−1

i
, yn]yn

f
−1
i,n

(yi) � y
−1
i
y
−1
n
yiynyi � [y−1

i
, y

−1
n
]yi

f
−1
i,n

(yj) �






[y−1
i
, y

−1
n
]yj[y

−1
i
, y

−1
n
]−1 if i < j, j �= g

yj if i > j

Let N be the normal subgroup of G(n) normally generated by yn. We can rewrite

the above computations as follows. We use fi,n and f
−1
i,n

to denote both the mapping

classes and their induced map on G(n) for convenience of notation.

fi,n(A1)A1 �






1 if 1 < i

y1 if i = 1

fi,n(An)An � yi

fi,n(yn) � 1

fi,n(yj) � yj if j �= g

For the inverse map f
−1
i,n

we compute:
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f
−1
i,n

(A1)A1 �






1 if 1 < i

y
−1
1 if i = 1

f
−1
i,n

(An)An � y
−1
i

f
−1
i,n

(yn) � 1

f
−1
i,n

(yj) � yj if j �= n

From the above it is clear that fi,n and f
−1
i,n

act by the identity on the first n− 1

generators of G, and sends yn to an element of the subgroup N . Note that the map

G �→ G/N is the homomorphism of π1(Dn) induced by the map � which caps the nth

boundary component of Dn as in Figure 5.6. As the mapping classes fi,n and f
−1
i,n

fix

−−−−→. . . . . .

Figure 5.6: Above is an illustration of the map � : Dn → Dn−1 obtained by capping off

the nth boundary component. From this one can see π1(Dn−1) = �y1, . . . yn−1� ∼= G/N .

the n
th boundary component and � is an inclusion map, the map � commutes with

fi,n and f
−1
i,n

. Hence N = fi,n(N) = f
−1
i,n

(N). Thus, given a word in v ∈ G, fi,n and

f
−1
i,n

each map v to a word of the same class in G/N .

We show by induction that for f = f
�m
pm,n

· · · f �1
p1,n

the following computations hold
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mod N :

f(A1)A1 = y
η

1

f(An)An = y
�1
p1
· · · y�m

pm

where η =
�

pi=1 �i.

For simplicity of notation we rewrite these equalities as

f(A1)A1 = y
±1
1 · · · y±1

1

f(An)An = y
±1
l1

· · · y±1
lk

where indexes are allowed to repeat. The initial case of the induction was done by

previous computations. Suppose that the above computations hold. Then it follows

that

f(A1) � a0y
±1
1 · · · y±1

1 A1

f(An) � a
�
0y

±1
l1

· · · y±1
lk
An.

where a0, a
�
0 ∈ N . Consider f

±1
pm+1,n

f
�m
pm,n

· · · f �1
p1,n

= f
±1
pm+1,n

f . As f
±1
pm+1,n

acts by the

identity on G/N , we have that
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fpm+1,n(yi) = a
+
i
yi

f
−1
pm+1,n

(yi) = a
−
i
yi

for some a
+
i
, a

−
i
∈ N , for all i. Hence we compute

fpm+1,nf(A1) �






fpm+1,n(a0)
�
a
+
1 y1

�±1 · · ·
�
a
+
1 y1

�±1
A1 if pm+1 �= 1

fpm+1,n(a0)
�
a
+
1 y1

�±1 · · ·
�
a
+
1 y1

�±1
yny1A1 if pm+1 = 1

f
−1
pm+1,n

f(A1) �






f
−1
pm+1,n

(a0)
�
a
−
1 y1

�±1 · · ·
�
a
−
1 y1

�±1
A1 if pm+1 �= 1

f
−1
pm+1,n

(a0)
�
a
−
1 y1

�±1 · · ·
�
a
−
1 y1

�±1
y
−1
1 y

−1
n
A1 if pm+1 = 1

fpm+1,nf(An) � fpm+1,n(a
�
0)
�
a
+
l1
yl1

�±1 · · ·
�
a
+
lk
ylk

�±1
ynypm+1An

f
−1
pm+1,n

f(An) � fpm+1,n(a
�
0)
�
a
−
l1
yl1

�±1 · · ·
�
a
−
lk
ylk

�±1
y
−1
pm+1

y
−1
n
An.

Therefore, as f±1
pm+1,n

(a0), f±1
pm+1,n

(a�0), a
+
i
, a

−
i
, yn, y

−1
n

∈ N , we can do the following

computation mod N .

f
±1
pm+1,n

f
�m
pm,n

· · · f �1
p1,n

(A1)A1 =






y
η

1y
±1
1 if pm+1 = 1

y
η

1 if pm+1 �= 1

f
±1
pm+1,n

f
�m
pm,n

· · · f �1
p1,n

(An)An = y
�1
p1
· · · y�m

pm
y
±1
pm+1

This completes the induction.

Thus θ(x�1
p1
· · · x�m

pm
) = y

�1
p1
· · · y�m

pm
and µ(w) = y

η

1 , as desired.
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Note that for words v ∈ [E(n − 1), E(n − 1)] the maps f1,n occur in pairs with

opposite exponents. Hence for v ∈ [E(n− 1), E(n− 1)], µ(v) = 1.

5.3 Structure of the Magnus subgroup quotients

In Lemma 5.5 we considered compositions of maps which defined a correspondence

between elements of the free group E(n − 1) and elements of Mod(Dn). Lemma

5.4 allows us to relate the Johnson homomorphism Jk(Dn) to the Magnus homomor-

phism Mk(Sg). We now combine these tools to construct families of mapping classes

in Mk(Sg) which have a desirable algebraic structure in the image of the Magnus

homomorphism.

Let i : Dg → Sg be the separable embedding illustrated in Figure 5.1. Consider

the following composition of maps:

E(g − 1)
ι

�→ P (g)
ψ

�→ Mod(Dg)
i
�

→ Mod(Sg)

where i� : Mod(Dg) → Mod(Sg) is the map described in Lemma 5.1. Let ρ = i
� ◦ψ ◦ ι.

The following theorem illustrates that ρ retains the structure of the free group.

Theorem 5.6. Let S be an orientable surface with genus g ≥ 3. Then the map

ρ : E(g−1) → Mod(S) induces a monomorphism on the quotients ρ : E(g−1)k/E(g−

1)k+1 → Mk(S)/Mk1(S) for all k.

Proof. Let Dg be a disk with g punctures. To prove the theorem it suffices to show

that mapping classes contained in the subgroup ρ(E(g− 1)) satisfy the conditions of

Lemma 5.4 and produce distinct images through the Magnus homomorphism. For this
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we employ several results about the pure braid group, P (g). Consider the following

split exact sequence

1 → E(g − 1)→P (g)→P (g − 1) → 1

where the map E(g−1) → P (g) is as in Lemma 5.5 and P (g) → P (g−1) is given

by forgetting the gth strand. This exact sequence induces an isomorphism as given in

[6]:

E(g − 1)k
E(g − 1)k+1

⊕ P (g − 1)k
P (g − 1)k+1

∼=
P (g)k
P (g)k+1

In particular, the map ι induces an injective map ι on the lower central series

quotients:

ι :
E(g − 1)k
E(g − 1)k+1

�→ P (g)k
P (g)k+1

.

By direct analysis of the induced automorphisms on G(g) [2] Corollary 1.8.3, it is

clear that ψ (P (g)) ⊂ J2(Dg). Given this, Lemma 2.2 shows that ψ (P (g))
k
⊂ Jk(Dg).

Hence, we have a well defined map ψ : P (g)k
P (g)k+1 → Jk(Dg)

Jk+1(Dg)
. By [7], Theorem 1.1

ψ (P (g)k+1) = ψ (P (g)) ∩ Jk+1(Dg). Hence the map ψ is injective.

ψ :
P (g)k

P (g)k + 1
�→ Jk(Dg)

Jk+1(Dg)

By Proposition 5.2, the map i
� induces a monomorphism i : Jk(Dg)

Jk+1(Dg)
→ Jk(Dg)

Jk+1(Dg)
.

By Lemma 5.4, given v ∈ E(g−1)k
E(g−1)k

we have that

τ
�
k
(i�ψι(v))[γ1, γg] = (1− γ1)(1− γg)i∗(w1)i∗(wg)

−1
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written as an element of
F

�
k

F
�
k+1

as a Z
�
F

F �

�
module where wi = τk(f)(Ai).

Note that we have traced w ∈ E(g − 1)k/E(g − 1)k+1 through the following

composition of maps:

E(g − 1)k
E(g − 1)k

ι

�→ P (g)k
P (g)k+1

ψ

�→ Jk(Dg)

Jk+1(Dg)

i

�→ Mk(Sg)

Mk+1(Sg)

τ
�
k(−)[γ1,γg ]−→ F

�
k

F
�
k+1

.

By definition, the maps ι and ψ are homomorphisms. Proposition 5.2 shows that

i is a homomorphism. The map τ
�
k
(−)[γ1, γg] : Mk(S) → F

�
k
/F

�
k+1 is a homomorphism

as τ �
k
is a homomorphism. As all maps in this composition are homomorphisms, the

composition map is also a homomorphism.

As this composition is a homomorphism, in order to complete the proof it suffices

to show that the image of v through this composition is not the identity. As shown

in Lemma 4.5, this module has no torsion of the form (1 − γ)x = 0 where γ is a

generator of F . Hence for i∗(w1)i∗(wg)−1 = i∗(w1w
−1
g
) �= 1 as an element of F �

k
/F

�
k+1,

we have that τ �
k
(i�ψι(w))[γ1, γg] = (1− γ1)(1− γg)i∗(w1w

−1
g
) �= 0. By Lemma 5.3 the

map i∗ is injective, thus it suffices to show that w1w
−1
g

�= 1 as an element of G(g)k
G(g)k+1

.

By Lemma 5.5,

π(w1w
−1
g
) = π(w1)π(wg)

−1

= µ(v)θ(v)−1

= v
−1 when written in the generators yi of G(g − 1).

Since π is a homomorphism we can conclude that w1w
−1
g

�= 1 and hence
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τ
�
k
(i�ψι(w))[γ1, γg] = (1 − γ1)(1 − γg)i∗(w1w

−1
g
) �= 0. This shows that ker(ρ) = 0

and hence ρ is injective.

Theorem 5.7. Let S be an orientable surface with genus g ≥ 3. Then the successive

quotients of the Magnus filtration Mk(S)
Mk+1(S)

surject onto an infinite rank torsion free

abelian subgroup of
F

�
k

F
�
k+1

via the map

Mk(S)

Mk+1(S)

τ
�
k(−)[c6,c2]−→ F

�
k

F
�
k+1

where c2 and c6 are the generators of F illustrated in Figure 5.8.

Proof. Let γ and δn be the simple closed curves on S shown in Figure 5.7. Let

in : D → S be the embedding which sends the 3 holed disk D to a neighborhood

γ∪δn. This set of embeddings of the disk onto S was used by Church and Farb in [3],

Theorem 3.2 to produce an infinite family of mapping classes in Mag(S). We employ

the same embeddings to produce an infinite family of mapping classes in Mk(S).

Let the free group E(2) be generated by {x1, x2}. Consider the commutator

c
k = [· · · [[x2, x1], x1], · · · , x1] ∈ E(2)k (commutator with x1 k − 1 times). By [7]

Theorem 1.1, this commutator yields a nontrivial element of Jk(D)
Jk+1(D) through the

composition:

E(2)
ι

�→ P (3)
ψ

�→ Mod(D3)

Let fk be the mapping class in Jk(D)
Jk+1(D) which arises from the commutator c

k: fk =

ιψ(ck). Let i
�
n
(fk) be the mapping class of S resulting from extending fk by the

identity on S using the embedding in.
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δ3

γ

Figure 5.7: Pictured above are two simple closed curves γ and δ3. The curve δn wraps

n times around the upper right handle. We consider disks with 3 holes embedded by

maps in which send D to a neighborhood of γ ∪ δn.

Each embedding in : D → S yields an infinite family of elements τ �
k
(i�

n
(fk))[c6, c2].

We will show that for each k the set {τ �
k
(i�

n
(fk))[c6, c2]|n ∈ N} is independent in

F
�
k

F
�
k+1

using the basis theorems developed in Section 4.1.

We begin by choosing a basis for F for our computations. Our chosen basis is

illustrated in Figure 5.8. Note that the generators c2 and c6 intersect each embedding

in(D) along the arcs A1 and A3 respectively. Hence, we may compute τ �
k
(i�

n
(fk))[c6, c2]

as in Lemma 5.4.

By Lemma 5.4,

τ
�
k
(i�

n
(fk))[c6, c2] = (1− c6)(1− c2)in∗(w

k

3(w
k

1)
−1)

where w
k

i
= fk(Ai)Ai. To show the set {τ �

k
(i�

n
(fk))[c6, c2]|n ∈ N} is independent we
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C

p0

∗

p3

p1

c2

c1

c6

c5

c4

c3

A1

A3

Figure 5.8: The subsurface i3(D) ⊂ S is shown in grey. The figure illustrates the basis

{c1, c2, c3, c4, c5, c6, . . . , c2g} chosen for computation of the Magnus homomorphisms.

Note that c2 and c6 intersect in(D) along the arcs Ai as in Lemma 5.4.

must compute the elements in∗(w1) and in∗(w3). By Lemma 4.5 the set

{τ �
k
(i�

n
(fk))[c6, c2]|n ∈ N} is independent if {in∗(wk

3(w
k

1)
−1)|n ∈ N} is an independent

set in
F

�
k

F
�
k+1

.

We impose the following ordering the elements of our basis for F �: c1 < c2 < c3 <

c4 < c5 < c6. Then by Lemma 4.4 the set B = { wi,j[ci, cj]|wi,j ∈ H1 (E(c1, . . . , cj))}

is a basis for F �. By Corollary 4.4, for each n ∈ N , in∗(wk

3(w
k

1)
−1) can be expressed

as a product of basic commutators of weight k in the generators of B. To show that

the set {in∗(wk

3(w
k

1)
−1)}n∈N is independent we work towards expressing the elements
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as basic commutators in our basis B.

We denote the generators of G which loop around the 3 interior boundary compo-

nents of D counterclockwise by y1, y2, y3 as in Lemma 5.5. As shown in [3], Theorem

3.2, for the embedding in : D → S the generators of G map to the following elements

of F written in terms of the basis chosen basis for π1(S):

in∗(y1) = [c2, c1]

in∗(y2) = [c5,c6][c3,c4]c4[c3c
−1
4 c

−1
3 c6, c5c

n

6 ]

in∗(y3) = [c4, c5c
n

6c3].

Again, we have allowed a change of basepoint from π1(S, p0) to π1(S, ∗) in this com-

putation.

Recall that π : G(3) → G(2) is the map obtained by taking the quotient by the

normal subgroup generated by y3. The retract π : G(3) → G(2) induces a retract of

the lower central series quotients π : G(3)k
G(3)k+1

→ G(2)k
G(2)k+1

. Let j : G(2) → G(3) be the

natural inclusion map. Thus πj : G(2)k
G(2)k+1

→ G(2)k
G(2)k+1

is the identity map. By Lemma 5.5

we have π(wk

1) = 1 and π(wk

3) = [· · · [[y2, y1], y1] · · · , y1]. Thus π(w3(w1)−1) = π(w3).

It then follows that wk

3(w
k

1)
−1 = jπ(wk

3)η
k for some η

k ∈ ker π.

We now compute the elements in∗jπ(wk

3(w
k

1)
−1) using the above expressions for
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in∗(y1) and in∗(y2).

in∗jπ(w
k

3(w
k

1)
−1) = in∗jπ(w

k

3)

= (in∗ ([· · · [[y2, y1], y1], · · · , y1]))

= ([· · · [[in∗(y2), in∗(y1)], in∗(y1)], · · · , in∗(y1)])

=
��

· · ·
��

[c5,c6][c3,c4]c4[c3c
−1
4 c

−1
3 c6, c5c

n

6 ], [c2, c1]
�
, [c2, c1]

�
, · · · , [c2, c1]

��

We will compute the elements in∗jπ(wk

3(w
k

1)
−1) explicitly in terms of this basis B.

To do this we must reduce the expressions for in∗(y2) to products of basis elements of

F
�
/F

��. Employing the commutator identity [ga, b] = g[a, b][g, b] we can re-write the

element [c3c
−1
4 c

−1
3 c6, c5c

n

6 ] as follows:

in∗(y2) = [c3c
−1
4 c

−1
3 c6, c5c

n

6 ]

= c3[c−1
4 c

−1
3 c6, c5c

n

6 ][c3, c5c
n

6 ]

= c3c
−1
4 [c−1

3 c6, c5c
n

6 ]
c3[c−1

4 , c5c
n

6 ][c3, c5c
n

6 ]

= c3c
−1
4 c

−1
3 [c6, c5c

n

6 ]
c3c

−1
4 [c−1

3 , c5c
n

6 ]
c3[c−1

4 , c5c
n

6 ][c3, c5c
n

6 ]

Using the commutator identity [a, vb] = [a, v] v[a, b], for any element c we have:

[c, c5c
n

6 ] = [c, c5]
c5[c, cn6 ]

= [c, c5]
c5[c, c6]

c5c6[c, cn−1
6 ]

= [c, c5]
c5[c, c6]

c5c6[c, c6] · · · c5c
n−1
6 [c, c6]
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Using this, our original expression becomes:

in∗(y2) =
c3c

−1
4 c

−1
3 [c6, c5]

c3c
−1
4 c

−1
3 c5[c6, c6]

c3c
−1
4 c

−1
3 c5c6[c6, c6] · · · c3c

−1
4 c

−1
3 c5c

n−1
6 [c6, c6]

c3c
−1
4 [c−1

3 , c5]
c3c

−1
4 c5[c−1

3 , c6]
c3c

−1
4 c5c6[c−1

3 , c6] · · · c3c
−1
4 c5c

n−1
6 [c−1

3 , c6]

c3[c−1
4 , c5]

c3c5[c−1
4 , c6]

c3c5c6[c−1
4 , c6] · · · c3c5c

n−1
6 [c−1

4 , c6]

[c3, c5]
c5[c3, c6]

c5c6[c3, c6] · · · c5c
n−1
6 [c3, c6].

As [c6, c6] = 1 this expression automatically reduces. Using the identity [a−1
, b] =

a
−1
[b, a] we simplify further to the following expression

in∗(y2) =
c3c

−1
4 c

−1
3 [c6, c5]

c3c
−1
4 c

−1
3 [c5, c3]

c3c
−1
4 c5c

−1
3 [c6, c3]

c3c
−1
4 c5c6c

−1
3 [c6, c3] · · · c3c

−1
4 c5c

n−1
6 c

−1
3 [c6, c3]

c3c
−1
4 [c5, c4]

c3c5c
−1
4 [c6, c4]

c3c5c6c
−1
4 [c6, c4] · · · c3c5c

n−1
6 c

−1
4 [c6, c4]

[c3, c5]
c5[c3, c6]

c5c6[c3, c6] · · · c5c
n−1
6 [c3, c6].

Noting that [a, b] = [b, a]−1 we can now write in∗(y2) (additively) as follows:

in∗(y2) =− c3c
−1
4 c

−1
3 [c5, c6]− c3c

−1
4 c

−1
3 [c3, c5]−

n−1�

i=0

c3c
−1
4 c5c

i
6c

−1
3 [c3, c6]

− c3c
−1
4 [c4, c5]−

n−1�

i=0

c3c5c
i
6c

−1
4 [c4, c6] + [c3, c5] +

n−1�

i=0

c5c
i
6[c3, c6].

By Proposition 4.3, for a fixed n we may write in∗(jπwk

3) in terms of basic com-
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mutators in the generators of B as follows.

in∗
�
jπw

k

3

�
=−

�
· · ·

�
c3c

−1
4 c

−1
3 [c5, c6], [c2c1]

�
, · · · [c2, c1]

�

−
�
· · ·

�
c3c

−1
4 c

−1
3 [c3, c5], [c2c1]

�
, · · · [c2, c1]

�

−
n−1�

i=0

�
· · ·

�
c3c

−1
4 c5c

i
6c

−1
3 [c3, c6], [c2c1]

�
, · · · [c2, c1]

�

−
�
· · ·

�
c3c

−1
4 [c4, c5], [c2c1]

�
, · · · [c2, c1]

�

−
n−1�

i=0

�
· · ·

�
c3c5c

i
6c

−1
4 [c4, c6], [c2c1]

�
, · · · [c2, c1]

�

+ [· · · [[c3, c5], [c2c1]] , · · · [c2, c1]]

+
n−1�

i=0

�
· · ·

�
c5c

i
6[c3, c6], [c2c1]

�
, · · · [c2, c1]

�
.

By Proposition 4.3, ker π is generated by weight k basic commutators in the

generators y1, y2, y3 with y3 in at least one entry. For convenience of notation, let us

denote the elements of B by ai. Let A ⊂ B be the set of all elements ai such that ai

appears with a nonzero coefficient in the expression for in∗(y3) for some n ∈ N when

written in terms of the basis B. Let Y be the subgroup of
F

�
k

F
�
k+1

generated by basic

commutators with an entry from the set A. Note that by construction, in∗(ker π) ⊂ Y

for each n. Hence if the elements in∗(wk

3(w
k

1)
−1) are independent in

F
�
k/F

�
k+1

Y
they are

also independent in F
�
k
/F

�
k+1. Also notice that by construction, the group

F
�
k/F

�
k+1

Y

is a free abelian group generated by basic commutators in elements of B \ A. To

consider whether the elements in∗(wk

3(w
k

1)
−1) are independent in

F
�
k/F

�
k+1

Y
we must first

determine the set A.

We begin by simplifying the expression for in∗(y3) using the commutator identity
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[a, vb] = [a, v] v[a, b] as follows:

in∗(y3) = [c4, c5c
n

6c3]

= [c4, c5]
c5[c4, c

n

6c3]

= [c4, c5]
c5[c4, c

n

6 ]
c5c

n
6 [c4, c3]

= [c4, c5]
c5[c4, c6]

c5c6[c4, c
n−1
6 ] c5c

n
6 [c4, c3]

= [c4, c5]
c5[c4, c6]

c5c6[c4, c6] · · · c5c
n−1
6 [c4, c6]

c5c
n
6 [c4, c3].

Note that the term c5c
n
6 [c4, c3] is not an element of our chosen basis for H1(F �

,Z) as

c6 > c4. In order to express in∗(y3) in terms of our basis for H1(F �
,Z) we rewrite this

term as follows:

c5c
n
6 [c4, c3] =[c3, c4][c4, c5][c3, c5]

c4[c1, c5]
c3[c4, c5]

n−1�

i=0

c5c
i
6[c3, c6]

n−1�

i=0

c5c
i
6[c3, c6]

n−1�

i=0

c5c3c
i
6[c4, c6]

n−1�

i=0

c5c4c
i
6[c3, c6].

Collecting the basis elements ofB that occur in the above expressions for in∗(y3), n ∈

N we find A to be the following set:

A =






[c4, c5], c5[c4, c6], c5c
i
6[c4, c6], [c3, c4] , [c4, c5], [c3, c5],

c4[c1, c5], c3[c4, c5], c5c
i
6[c3, c6], c5c3c

i
6[c4, c6], c5c4c

i
6[c3, c6]

��������
i ∈ N






Note that by construction, when viewed as elements of F
�
/F

��

Y
,

in∗(w
k

3(w
k

1)
−1) = in∗(jπ(w

k

3)η
k)

= in∗(jπ(w
k

3)).
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Thus the elements in∗(wk

3(w
k

1)
−1) are independent in F

�
/F

�� if the elements in∗(jπ(wk

3))

are independent in F
�
/F

��

Y
.

Modulo Y , in∗(jπ(wk

3)) can be written as follows:

in∗
�
jπw

k

3

�
=−

�
· · ·

�
c3c

−1
4 c

−1
3 [c5, c6], [c2c1]

�
, · · · [c2, c1]

�

−
�
· · ·

�
c3c

−1
4 c

−1
3 [c3, c5], [c2c1]

�
, · · · [c2, c1]

�

−
n−1�

i=0

�
· · ·

�
c3c

−1
4 c5c

i
6c

−1
3 [c3, c6], [c2c1]

�
, · · · [c2, c1]

�

−
�
· · ·

�
c3c

−1
4 [c4, c5], [c2c1]

�
, · · · [c2, c1]

�

−
n−1�

i=0

�
· · ·

�
c3c5c

i
6c

−1
4 [c4, c6], [c2c1]

�
, · · · [c2, c1]

�
.

Consider a finite sum of these elements. In
F

�
k/F

�
k+1

Y
, this sum can be written

as
�

M

m=1 αminm∗(jπ(wk

3)) where αm �= 0 and nm < nm+1 for all m. The M
th

term of this product is the only term containing a multiple of the basis element
�
· · ·

�
c3c5c

M−1
6 c

−1
4 [c6, c4], [c2c1]

�
, · · · [c2, c1]

�
. Hence the sum cannot be trivial, and thus

the elements in∗(jπ(wk

3)) must be independent in
F

�
k/F

�
k+1

Y
. Therefore the elements

in∗(wk

3(w
k

1)
−1) are independent in

F
�
k

F
�
k+1

.

As the set {in∗(wk

3(w
k

1)
−1)αn |n ∈ N} is an independent set in F

�
k
/F

�
k+1, the set

{(1 − c6)(1 − c2)in∗(wk

3(w
k

1)
−1)} is also an independent set. As τ

�
k
(i�

n
(fk))[c6, c2] =

(1 − c6)(1 − c2)in∗(wk

3(w
k

1)
−1), this shows that Mk(S)

Mk(S)
surjects onto an infinite rank

torsion free abelian subgroup of F �
k
/F

�
k+1 via the map f �→ τ

�
k
(f)[c6, c2].
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