


Abstract

Shake Slice and Shake Concordant Links

by

Anthony Bosman

The study of knots and links up to concordance has proved significant for many

problems in low dimensional topology. In the 1970s, Akbulut introduced the notion

of shake concordance of knots, a generalization of the study of knot concordance.

Recent work of Cochran and Ray has advanced our understanding of how shake con-

cordance relates to concordance, although fundamental questions remain, especially

for the class of shake slice knots. We extend the notion of shake concordance to links,

generalizing much of what is known for knots, and o↵er a characterization in terms of

link concordance and the infection of a link by a string link. We also discuss a number

of invariants and properties of link concordance which extend to shake concordance

of links, as well as note several that do not. Finally, we give several obstructions to

a link being shake slice.
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CHAPTER 1

Introduction

1. Background

An m-component link is a smooth embedding f : tm
i=1S

1 ! S3 of a collection

of disjoint, ordered circles with assigned orientations into the three sphere. A 1-

component link is called a knot. We say links L and L0 are isotopic if L can be

smoothly deformed into L0 via embeddings in S3. Isotopy induces an equivalence

relation on the set of links; we will always consider links up to isotopy.

In the 1950s and 60s, in their study of link singularities, Fox and Milnor introduced

a weaker equivalence relation on links called concordance [FM66]. We say two m-

component links L = L1t ...tLm and L0 = L0
1t ...tL0

m are (smoothly) concordant if

there exists a collection of m disjointly embedded, smooth, oriented annuli A1, ..., Am

in S3⇥ [0, 1] such that @Ai = Li⇥{0}t�L0
i⇥{1}. Notice if L and L0 are concordant,

then sublinks Li1 t ... t Lik and L0
i1 t ... t L0

ik
are also concordant, for {i1, ..., ik} ⇢

{1, ...,m}. A link that is concordant to the trivial link we call (smoothly) slice; this

is equivalent to the link L ⇢ S3 = @D4 bounding m disjoint, smooth disks in D4.

Here we will limit ourselves to the smooth category, but one could consider other

categories. For instance, if we relax the condition on the annuli from being smooth to

merely being topologically locally flat, then we call the links topologically concordant.

The study of links has been essential to the study of 3- and 4-manifolds. For

instance, Lickorish and Wallace showed that any closed, orientable 3-manifold can be
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obtained from a link in S3 via an operation called surgery. Improved understanding

of links up to concordance is recognized as a vital step in making progress on many

open problems in low dimensional topology.

2. Shake Concordance of Knots

Given a 4-manifold, one is often interested in when interesting homology classes

can be represented by some submanifold. It was in this context that Akbulut intro-

duced the notion of a shake slice knot, defined as follows.

Let W r
K denote the 4-manifold obtained by attaching a 2-handle with framing r

to the 4-ball B4 along a knot K ⇢ S3 = @B4. We call W r
K the trace of the knot and

it has homology

Hn(W
r
K) ⇠=

8
>>><

>>>:

Z n = 0, 2

0 n = 1, n � 3

.

A knot K is called r-shake slice if there exists a smoothly embedded 2-sphere ⌃ that

represents a generator of H2(W r
K) ⇠= Z as in Figure 1.1. Hence, after isotopy, �⌃

intersects the added 2-handle as 2n � 1 disks, n of which have as their boundary K

with its opposite orientation (since we are considering �⌃ rather than ⌃) and n� 1

of which have as boundary K with the original orientation. Deleting these disks, we

obtain the following equivalent definition.

Define the r-shaking of K to be a collection of 2n� 1 r-framed parallel copies of

K, where n are oriented in the direction of K and n� 1 are oriented in the opposite

direction. See Figure 1.2. Then we call K r-shake slice if some r-shaking of K bounds

a smooth, properly embedded, compact, connected, genus zero surface in B4.
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Figure 1.1. A schematic of an embedded sphere defining K to be

shake slice in WK .

Figure 1.2. A 0-shaking consisting of 3 parallel copies of the trefoil.

Note that every slice knot is r-shake slice, for all r, with a representative for

generator formed by the union of the slice disk for K and the core of the 2-handle

attached along K. It is natural to ask if the converse is true.

In [Akb77], Akbulut provided examples of 1-shake slice and 2-shake slice knots

that are not slice. Lickorish provided additional such examples in [Lic79]. More

recently constructions for infinitely families of r-shake slice knots that are not slice

for all nonzero r have been provided in [Akb93] and [AJOT13]. It remains an open

problem to determine if 0-shake slice implies slice.
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There is also a relative version. Let W r
K0,K1

denote the 4-manifold obtained by

attaching two 2-handles to S3 ⇥ [0, 1] along the knots Ki ⇢ S3 ⇥ {i} with framing r.

We call K0 and K1 r-shake concordant if there exists a smoothly embedded 2-sphere

that represents a generator (1, 1) of H2(W r
K0,K1

) ⇠= Z2. See Figure 1.3 for a schematic.

Figure 1.3. A schematic of the embedded sphere defining a shake

concordance in WK0,K0 .

We o↵er an alternative definition as follows. We say K0 is (m,n) r-shake con-

cordant to K1 if there is a smooth, properly embedded, compact, connected, genus

zero surface F in S3 ⇥ [0, 1] such that F \ S3 ⇥ {0} is an r-shaking of K0 with m

components and F \ S3 ⇥ {1} is an r-shaking of K1 with n components.

It is not hard to see that these definitions are equivalent with an argument anal-

ogous to that for the equivalence of the two definitions for shake slice knots.

Observe an r-shake slice knot is r-shake concordant to the unknot. Therefore the

examples di↵erentiating shake sliceness from sliceness also provide examples of pairs

of knots that are r-shake concordant but not concordant. However, these examples
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only cover nonzero r. Cochran and Ray extended this result to include r = 0 as

follows:

Theorem 1.1 (Theorem 4.1 in [CR16]). For any integer r, there exist infin-

itely many knots which are distinct in smooth concordance but are pairwise r-shake

concordant. For r = 0, there exist topologically slice knots with this property as well.

Moreover, they showed that many classical knot invariants of concordance fail

to be invariants of r-shake concordance. Part of this involved completely classifying

knots up to shake concordance in terms of concordance and satellite operations.

3. Summary of Results

We extend the notion of r-shake concordance to links. We o↵er two such general-

izations: an r-shake concordance of links and a stricter version we call strong r-shake

concordance of links. These are both generalizations of (smooth) link concordance.

They also gives rise to the notion of a link being r-shake slice or strongly r-shake slice.

We largely restrict our attention to r = 0, for this is the setting in which the most

interesting open problems remain in the setting of knots. When we omit r, it is to be

understood r = 0.

We then o↵er a number of families of links that help distinguish between concor-

dance, strong shake concordance, and shake concordance of links. In particular we

prove the following two results:

Corollary 2.9. There exists an infinite family of two-component links that are

pairwise shake concordant, but not pairwise strongly shake concordant.
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Proposition 2.12. There exists an infinite family of 2-components links with

unknotted components that are all strongly shake concordant to the Hopf link, but

none of which are concordant to the Hopf link.

In fact, we show that given any two knots K and K 0, we may find 2-component

links L and L0 that are shake concordant such that L1 = K and L0
1 = K 0. Hence,

unlike concordance (or strong shake concordance), our notion of shake concordance

of links completely fails to descend to sublinks. It is perhaps surprising then that

we are able classify shake concordant (and strongly shake concordant links) in terms

of concordance and an operation on links known as string link infection. This clas-

sification reduces to that o↵ered by Cochran and Ray in the case of knots [CR16,

Theorem 3.7].

Theorem 3.2. Two m-component links M and M 0 are shake concordant if and

only if the links obtained by string link infection I(L, J,E') and I(L0, J 0,E0
'0) are

concordant for some:

• m-component slice links L and L0,

• m-component string links J , J 0 with closures bL = M and bL0 = M 0, respec-

tively,

• and embeddings of multidisks E' and E0
'0 each with m subdisks that respect

L and L0, respectively.

We then turn our attention to invariants of shake concordance and strong shake

concordance. There are many well studied invariants of concordance. Especially

significant in the study of links have been Milnor’s higher order linking numbers, the
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µ̄ invariants. Incredibly, our classification theorem allows us to recover that the first

non-vanishing among these are also an invariant of shake concordance of links.

Theorem 4.2. If two links L and L0 are shake concordant, then they have equal

first non-vanishing Milnor invariants.

Cochran and Ray showed that the zero surgery manifold MK , a 3-manifold nat-

urally obtained from a knot, is preserved up to homology cobordism under shake

concordance. Since many concordance invariants are determined by the associated

zero surgery manifold, this allowed them to establish these as invariants of shake con-

cordance of knots. It follows these are also invariants of the components of strongly

shake concordant links.

For shake concordance of links, we prove an analogous result:

Proposition 4.4. Suppose m-component links L and L0 are shake concordant.

Then the zero surgery manifolds ML and M 0
L are homology cobordant.

However, since the components of shake concordant links can vary arbitrarily,

we fail to recover any such invariants for the components. Nevertheless, we succeed

in showing that several concordance invariants serve as obstructions to a link being

shake slice. In particular, a shake slice link has all components algebraically slice and

hence the signatures and Arf invariants all vanish. This follows from the following

obstruction.

Proposition 5.3. Suppose the m-component link L is shake slice. Then L

bounds m disjoint disks in a homology 4-ball.
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We also o↵er additional obstructions: for instance, the Milnor invariants and

a generalized Arf invariant for links vanish for shake slice links. Together, these

obstructions suggest that just as in the case of knots, it is a di�cult problem to

detect the di↵erence between a slice and shake slice link.
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CHAPTER 2

Shake Concordance of Links

1. Defining Shake Concordance for Links

In this chapter we extend the definition of shake slice to links. We’ll see in section

1 that, in fact, we obtain two such generalizations: shake concordance of links and,

stricter, strong shake concordance of links. Then in section 2 we’ll briefly review a way

to think about concordance that will prove useful for our study of shake concordance.

Finally, in section 3 we o↵er infinite families of links that distinguish the notions of

concordance, strong shake concordance, and concordance of links.

1.1. Shake Slice Links. Consider an m component link L ⇢ S3 = @B4. We

obtain a 4-manifold WL by attaching a 2-handle with framing r along each component

Li of L, i = 1, ...,m. Note W r
L has as boundary the 3-manifold obtained by r surgery

on L, which we denote M r
L. Moreover,

Hn(W
r
L) ⇠=

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

Z n = 0

0 n = 1

Zm n = 2

0 n � 3

.

Extending the notion from knots, we can now define what it means for a link to be

shake slice–see Figure 2.1.



10

Definition 2.1. We call L r-shake slice if there existm disjoint spheres ⌃1, ...,⌃m

embedded in W r
L that represent the generators (1, 0, ..., 0), ..., (0, 0, ..., 1) of H2(W r

L) ⇠=

Zm .

Figure 2.1. A schematic of a shake slice 2-component link.

Up to isotopy, each embedded sphere �⌃i intersects the ith added 2-handle as

2nii � 1 disks for some 2ni � 1 and intersects the jth added 2-handle as 2nij disks for

some nij � 0 for each j 6= i. In particular, after deleting these disks, the manifold

tm
k=1 � ⌃k has as their boundary an odd number of r-framed parallel copies of Li

for each i = 1, ...,m. In particular, �⌃i with these disks removed bounds 2ni � 1

r-framed parallel copies of Li, ni of which have the orientation of Li and nii � 1 of

which have the opposite orientation, and 2nij r-framed copies of Lj, nij of which have

the same orientation of Lj and nij of which have opposite orientation.

Hence we may form an equivalent definition for a link to be shake slice as follows.

Definition 2.2. For any link L define the (2n1 � 1, ..., 2nm � 1) r-shaking of L

to be the link formed by taking 2ni � 1 r-framed parallel copies of Li where ni are

oriented in the direction of Li and ni � 1 are oriented in the opposite direction for

each i = 1, ...,m.
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See Figure 2.2 for a (3, 1) 0-shaking of a 2-component link.

Figure 2.2. A (3,1) 0-shaking of the trefoil.

Definition 2.3 (Alternative). We call an m-component link L ⇢ S3 = @D4 r-

shake slice if there existsm disjoint, smooth, properly embedded, compact, connected,

genus zero surfaces ⌃1, ...,⌃m inD4 such that each ⌃i bounds 2nii�1 r-framed parallel

copies of Li, precisely nii of which have the same orientation as Li, and 2nij r-framed

parallel copies of Lj, precisely nij of which have the same orientation as Lj, for all

j 6= i, such that tm
k=1⌃k bound a (N1, ..., Nm) r-shaking of L where

Ni =
mX

j=1

nij.

One notices that a link L is r-shake slice, for all r, whenever L is slice. The

converse fails for r 6= 0 since it is known to fail for knots. Therefore, we will limit

our attention largely to 0-shake slice links. When we do not specify r, it is to be

understood r = 0.

If we impose the restriction on each sphere ⌃i that it only intersects the ith 2-

handle, then we get the following, stricter, notion:
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Definition 2.4. We call an m-component link L strongly r-shake slice if there

exists m disjoint, smooth, properly embedded, compact, connected, genus zero sur-

faces ⌃1, ...,⌃m in D4 such that each ⌃i bounds 2nii � 1 r-framed parallel copies of

Li, precisely nii of which have the same orientation as Li, such that tm
k=1⌃k bound a

r-shaking of L.

Then notice for a link, for all r,

slice ) strong r � shake slice ) r � shake slice.

1.2. Shake Concordant Links. We may now extend the notion of shake con-

cordance defined for knots to links. Given oriented m-component links L ,! S3⇥{0}

and L0 ,! S3⇥ {1} let W r
L,L0 denote the 4-manifold obtained by adding 2m 2-handles

with framing r to S3 ⇥ [0, 1] along the 2m handles of the links L and L0.

Definition 2.5. We callm-component links L and L0 shake concordant if there ex-

ist m disjoint spheres ⌃1, ...⌃m embedded in W r
L,L0 that represent the set of generators

{(x1, ..., xm, y1, ..., ym)|xi = yi = 1, xj = yj = 0 for j 6= i}i=1,...,n of H2(W r
L,L0) ⇠= Z2m

Figure 2.3. A schematic of shake concordant 2-component links.
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And as before, this gives rise to an alternative definition.

Definition 2.6 (Alternative). We call the links L and L0 (2N1 � 1, ..., 2Nm �

1; 2N 0
1 � 1, ..., 2N 0

m � 1) r-shake concordant if there are disjoint smooth, properly

embedded, compact, connected, genus zero surfaces F1, ..., Fm in S3 ⇥ [0, 1] such that

Fk\S3⇥{0} consists 2nii�1 r-framed parallel copies of Li, precisely nii of which are

orientated the same as Li, and for j 6= i, 2nij r-framed parallel copies of Lj, precisely

nij of which are oriented the same as Lj, where

Nj =
mX

i=1

nij, j = 1, ..,m.

Similarly, each Fk \ S3 ⇥ {1} consists of 2n0
ii � 1 copies of L0

i, precisely n0
ii of which

are orientated the same as L0
i, and for j 6= i, 2n0

ij copies of L
0
j, precisely n0

ij of which

are oriented the same as L0
j, where

N 0
j =

mX

i=1

n0
ij, j = 1, ..,m.

We say the links are strongly r-shake concordant if nij = n0
ij = 0 whenever i 6= j.

See Figure 2.4 for a schematic of a (3, 1; 1, 3) shake concordance and Figure 2.5

for a schematic of a (3, 1; 1, 3) strong shake concordance.

L1' L2' -L2' L2'

L1 -L1 L1 L2

Figure 2.4. A (3,1;1,3) shake concordance.
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L1' L2' -L2' L2'

L1 -L1 L1 L2

Figure 2.5. A strong shake concordance.

Notice for any two links,

concordance ) strong shake concordance ) shake concordance.

For knots, strong shake concordance and shake concordance are equivalent no-

tions. Moreover, observe that if links L = L1 t ... t Lm and L0 = L0
1 t ... t L0

m are

(n1, ..., nm;n0
1, ..., n

0
m) strongly r-shake concordant, then components Li and L0

i are

(ni, n
0
i) r-shake concordant as knots for all i = 1, ...,m. One would not expect from

the definition, though, that something similar can be said if L and L0 are r-shake

concordant, but not strongly r-shake concordant. In fact, we will see that in this

setting there is no such relationship between components Li and L0
i.

Finally, note that an m-component link is (strongly) r-shake slice if and only if

it is (n1, ..., nm; 1, ..., 1) (strongly) r-shake concordant to the trivial link. We can see

this in one direction by removing a ball from D4 that hits a neighborhood of a point

in each of the m genus zero surfaces and in the other direction by capping o↵ the

unlink by m disks.

1.3. Induced Equivalence Relation on Links. Notice every link is (1, 1)

strongly r-shake concordant to itself by the trivial concordance. Also, if L is (n1, ..., nm;
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n0
1, ..., n

0
m) (strongly) r-shake concordant to L0, then L0 is (n0

1, ..., n
0
m;n1, ..., nm) (resp.

strongly) r-shake concordant to L. However, unlike concordance, strong shake con-

cordance is not in general a transitive property of links. For instance, suppose L is

(1, 3) strongly r-shake concordant to L0 and L0 is (3, 5) strongly r-shake concordant

to L00. If we attempt to glue together the genus zero surfaces representing these shake

concordances along the 3-component r-shaking of L0, we obtain a surface bounding

r-shakings of L and L00, but genus is introduced by the gluing, so we cannot con-

clude that L is (1, 5) strongly r-shake concordant to L0 as one may hope. However,

transitivity does hold if we restrict the shake concordance as follows.

Proposition 2.7. If L is (n1, ..., nm; 1, ..., 1) r-shake concordant to L0 and L0 is

(1, ..., 1;n00
1, ..., n

00
m) r-shake concordant to L00, then L is (n1, ..., nm;n00

1, ..., n
00
m) r-shake

concordant to L00.

Moreover, if L is (n1, ..., nm;n0
1, ..., n

0
m) r-shake concordant to L0 and L0 is (1, ..., 1;

n00
m, ..., n

00
m) strongly r-shake concordant to L00, then L is (n1, ..., nm;n0

1n
00
1, ..., n

0
mn

00
m)

r-shake concordant to L00.

Proof. The first case is clear as we can simply glue together the surfaces Fi

and F 0
i of the r-shake concordances in the obvious way for i = 1, ...,m. In the

second case, we glue similarly, but note that this is possible since the surfaces of the

r-shake concordance have trivial bundles and hence we can take parallel copies by

extending the normal vector field given by the r-framing to all of the surface. Note

then that taking n0
i = 2ki � 1 parallel copies of each F 0

i , ki � 1 of which have reversed

orientation, for all i = 1, ...,m, and glueing in the expected way, gives the desired

shake concordance. ⇤
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Despite this restriction on transitivity, we can still introduce equivalence relations

⇠r on the set of links where we say L ⇠r L
0 if there exist links L = L1, L2, ..., Ln = L0

for some n such that Li is shake concordant to Li+1 for all i = 1, ..., n�1. Similarly we

may define equivalence relations for strong r-shake concordant. In the next chapter

we will o↵er a classification theorem, Theorem 3.2, that helps us better understand

these equivalence classes.

2. Visualizing Slice Disks and Concordances

We can visualize a concordance or a slice disk as a “movie”, which we here illus-

trate with an example.

Figure 2.6 depicts a concordance between two links. Figure 2.7 shows cross sec-

tions of the surface of the concordance as you move down it. In particular, Figure

2.7 (A), (B), (C) shows the e↵ect of the saddle, while (D), (E), (F) shows the e↵ect

of capping o↵ a component with a disk.

More generally, there are four features of a surface as we move up it that change

our diagrams beyond just isotopy. A local minimum of the surface gives birth to

a new component, while a local maximum kills o↵ a component; these correspond

with capping o↵ components with slice disks. A join saddle fuses two components

of a link, as in our example, while a split saddle separates a component into two

di↵erent components. Diagrammatically, this fusion of components is accomplished

by attaching two components via a band while a split is accomplished by attaching

both ends of a band to the same component. See Figure 2.8, although note that these

bands may also be knotted or twisted.

If a slice disk has no such local maximum, we call the knot ribbon.



17

Figure 2.6. A concordance between links.

3. Di↵erentiating Shake, Strong Shake, and Concordance

We now turn our attention to understanding how concordance, r-shake concor-

dance, and strong r-shake concordance di↵er from each other. The work of Akbulut

and others [Akb77],[Akb93], [AJOT13] demonstrating that there are r-shake slice

knots that are not slice for r 6= 0 leaves us interested in the case r = 0. Here we

recall the finding of Cochran and Ray [CR16] that there exists an infinite family of

topologically slice knots that are pairwise 0-shake concordant but distinct in smooth

concordance. Of remaining interest are links with at least 2-components. Note that

families of links with unknotted components are especially helpful in understanding

how link concordance e↵ects links beyond its e↵ect on individual components.
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(a) (b) (c)

(d) (e) (f)

Figure 2.7. Diagrams along various steps of the concordance.

(a) (b) (c)

Figure 2.8. E↵ect of adding a band.

3.1. Shake Concordant But Not Strongly Concordant. For knots, shake

concordance and strong shake concordance are equivalent notions. We introduce

a family of 2-components links to show that strong shake concordance and shake

concordance are distinct notions for links. Let h(K) denote the 2-component link
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consisting of first component K and second component a meridian of K as in Figure

2.9.

K

Figure 2.9. The two component link h(K) consisting of K and its

meridian.

Note for U the unknot, h(U) is the hopf link.

Proposition 2.8. The links h(K) and h(J) are shake concordant for any knots

K and J .

Proof. We show in Figure 2.10 how a shake concordance accomplishes a crossing

change in a link of the form h(K), which we now explain. Position the meridian

component so that it is next to the crossing in K that we want to change as in Figure

2.10 (A). Then, consider a (1, 3) shaking of h(K) as in Figure 2.10 (B). Take a band

sum of one of the meridian components that has the appropriate orientation with K

at the crossing to change it from an overcrossing to undercrossing (or vice versa). Also

take a band sum of a meridian component that has opposite orientation and band it

with K so as not to change K as in as in Figure 2.10 (C). Depending on orientations,

we may need a half twist in the band as in Figure 2.10 (D). Attaching these bands

accomplishes the desired shake concordance between h(K) and h(K) with a crossing

change of our choice as in Figure 2.10 (E).
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Notice this technique can be extended to accomplish any number of crossing

changes via a shake concordance. In particular, there is a (1, 2n + 1) shake con-

cordance between h(K) and h(K) with n crossing changes accomplished by attaching

bands in a similar way at each of the n crossings. ⇤

(a) (b) (c) (d) (e)

Figure 2.10. Steps to accomplish crossing change via shake concordance.

Not all knots are shake concordant; for instance, Cochran and Ray showed in

[CR16] that signature is an invariant of shake concordance that distinguishing infin-

itely many di↵erent classes of knots up shake concordance. Therefore, we see from

the above proposition that corresponding sublinks of shake concordant links are not

necessarily shake concordant! Moreover, if K and J have di↵ering signatures, h(K)

and h(J) are not strongly shake concordant, since K and J are not shake concordant.

This gives us the following desired corollary:

Corollary 2.9. There exists an infinite family of two-component links that are

pairwise shake concordant, but not pairwise strongly shake concordant.

Proof. Consider the family {h(Kk)}k=1,2,3,... where Kk is the connect sum of k

trefoil knots which has signature 2k and therefore are distinct up to concordance. ⇤
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We can strengthen the above proposition using the notion of link homotopy in-

duced by Milnor in [Mil54]. We say links L and L0 are link homotopic if there is a

homotopy deforming L into L0 such that the components remain disjoint during the

deformation.

Proposition 2.10. If two m-component links are link homotopic, then they are

sublinks of shake concordant 2m-component links.

Proof. Suppose m-component links L and L0 are link homotopic, then L0 can

be obtained from L by ambient isotopy and crossing changes between arcs of the

same component of L. However, as we saw in the proof of Proposition 2.8, these

crossing changes can also be obtained via shake concordance of the components of

L with added meridian components. Therefore, if we let J (resp. J 0) denote the

2m-component link consisting of the m components of L (resp. L0) and m meridian

components for each component of L, then we have J is shake concordant to J 0. See

Figure 2.11. ⇤

3.2. Strongly Shake Concordant But Not Concordant. We now show that

strong shake concordance and concordance are distinct notions. Note that Theorem

1.1 provides a infinite family of knots that are shake concordant but not concordant.

We extend this result by showing that there is an infinite family of two component

links with unknotted components that are pairwise strongly shake concordant but

not shake concordant.

Given a knot K, let L(K) denote the two component link of Figure 2.12. Each

component of L(K) is unknotted and L(U) is the hopf link.
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K1

K2

K3

(a) Homotopic 3-component links.

K1

K2

K3

(b) Shake concordant 6-component links.

Figure 2.11

K

Figure 2.12. The link L(K).

Theorem 2.11 (Cha, Kim, Ruberman, Strle 2010). The 2-component link L(K)

is not concordant to the Hopf link for K when ⌧(K) > 0. Moreover, there is a infinite

family of knots Kn such that L(Kn) are distinct up to smooth concordance.
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Here ⌧(K) denotes the Ozsváth-Szabó tau invariant. It is an integer-valued invari-

ant of knot concordance that vanishes for slice knots, is additive under connect sum,

that is, ⌧(K#K 0) = ⌧(K) + ⌧(K 0), and changes sign under changes in orientation,

⌧(�K) = �⌧(K). We will discuss the tau invariant in more detail when we discuss

invariants of shake concordance.

Proposition 2.12. There exists an infinite family of 2-components links with

trivial components that are all strongly shake concordant to the Hopf link, but none

of which are concordant to the Hopf link.

Proof. We argue that L(K) is strongly (1, 1; 3, 1) shake concordant to the Hopf

link for any knot K. First take a (3, 1) shaking of the Hopf link as in Figure 2.13 (A)

and (B). Then isotope one of the parallel copies as in Figure 2.13 (C) and band sum it

with the other parallel copies to obtain Figure 2.13 (D). This gives the desired strong

shake concordance; however, we have by Theorem 2.11 that L(K) is not concordant

to the Hopf link whenever ⌧(K) > 0. Tau is known to be positive for many families

of knots. For instance, for a (p, q)-torus knot Tp,q, where p, q > 0, we have ⌧(Tp,q) =

(p� 1)(q � 1)/2 [OS03, Corollary 1.7]. ⇤
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(a) (b)

K

(c)

K

(d)

Figure 2.13. Steps to obtain strong shake concordance between Hopf

link and L(K).
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CHAPTER 3

Classification Theorem

1. Classification of Shake Concordance of Knots

1.1. Satellite Operation. Cochran and Ray [CR16] o↵ered a classification of

shake concordance up to concordance and satellite operation. This latter notion is

defined as follows. Consider a knot P essentially embedded in a solid torus S1⇥D2 ⇢

S3, that is, there exists no meridinal disks that avoids P . Then given any knot

K ⇢ S3, there exists an embedding f that maps the torus to a neighborhood of K,

sending the longitude of S1 ⇥ {1} to the longitude of f(S1 ⇥D2). Notice, the image

of P under the embedding f(P ) is a knot. Notice, we can think of a pattern P as an

operator, denoting the knot f(P ) obtained by the satellite operation as P (K). Since

P is a torus knot, the winding number of a satellite operation is well-defined.

1.2. Classification Theorem. We are now prepared to state the classification

theorem for knots up to shake concordance.

Theorem 3.1 (Theorem 3.7 in [CR16]). Two knots K and J are shake concor-

dant if and only if there exist winding number one satellite operators P and Q, with

i(P ) and i(Q) ribbon where i denotes the inclusion of the standard torus into S3, such

that P (K) is concordant to Q(J).
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In this chapter, our goal is to generalize this theorem to a classification theorem for

shake concordance of links. This first requires a generalization of satellite operation

for links, which is the focus of the next section.

2. String Links and Infection

An m-component string link is a proper embedding

J :
mG

i=1

Ii ! D2 ⇥ I

of the disjoint union of m copies of the unit interval Ii in D2 ⇥ I where we equip D2

with m marked points in its interior and such that the image of each Ii runs from

(xi, 0) to (xi, 1). By an abuse of notation, we also refer to the image of the string

link by J . We call the string link tm
i=1({xi}⇥ I) the trivial m-component string link.

Notice, a sting link J can be closed in the obvious way to obtain an m-component

link bJ , which we call closure of J . Every link is the closure of some string link. One

may consider the meridians and longitudes of string links exactly analogous as those

of links.

Infection by a string link [COT04], also called multi-infection [CFT07] and tan-

gle sum [CO94], is a generalization of satellite construction that modifies an m-

component link L by some string link J in order to obtain an infected m-component

link in such a way that we here describe. See [CFT07, Section 2] for details.

An r-multi-disk E is an embedded disk D with k disjoint embedded open subdisks

D1, ..., Dk contained in the interior of D. Consider an m-component link L and a map

' : E ! S3 such that the image of ', which we’ll denote E', intersects L transversely

at points p1, ..., pm all of which are in the images of D1, ..., Dr.
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L1 L2

(a) L with E' (b) J

L1 L2

(c) I(L, J,E')

Figure 3.1. Infection of link L by string link J .

We may view (E' \tiDi)⇥ [0, 1] as the exterior of the trivial k-component string

link. Note this has the same boundary as the exterior of any k-component string link

J , denoted (D2 ⇥ [0, 1] \ ⌫(J)) where ⌫(J) is the neighborhood of J . Hence we can

modify S3 by deleting the exterior of the trivial r-component string link and glue in

the exterior of the string link J in such a manner that equates the meridians and

longitudes of these two string links. This gives a manifold that is homeomorphic to

S3:

S3 \ ((E' \ tiDi)⇥ I)[ (D2⇥ I \ ⌫(J)) = S3 \ (E'⇥ I)[ (D2⇥ I \ ⌫(J))[ (tiDi⇥ I)

⇠= D3 [D3 ⇠= S3.

E↵ectively, this ties J into L along E' resulting in an infected link in S3 we denote

I(L, J,E'). See Figure 3.1.

We will say E' respects L if k = m and each link component Li intersects the

subdisk Dj algebraically once if i = j and algebraically zero times if i 6= j. See Figure
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3.1 (A). If, moreover, the count of intersection points is geometrically zero for i 6= j,

then we say the embedding strongly respects L.

3. Classification of Shake Concordance of Links

Theorem 3.2. The m-component links M and M 0 are shake concordant if and

only if the links obtained by string link infection I(L, J,E') and I(L0, J 0,E0
'0) are

concordant for some:

• m-component slice links L and L0,

• m-component string links J , J 0 with closures bJ = M and bJ 0 = M 0, respec-

tively,

• and embeddings of multidisks E' and E0
'0 each with m subdisks that respect

L and L0, respectively.

Remark. In the above theorem we can specify r-shake concordance for any r

if we introduce r twists to each series of strands passing through each subdisk in

the multiinfection, denoted Ir(L, J,E'). Also shake concordant can be strengthened

to strong shake concordant by also strengthening the condition on multidisks from

respect to strongly respect. The proof is identical to what we o↵er here, other than

maintaining the modified conditions throughout.

4. Proof of Theorem

4.1. Proof of “if” direction. First we prove the following lemma.

Lemma 3.3. Given slice m-component link L, string link J , and an embedded mul-

tidisk E' that respects L, we have I(L, J,E') is (1, ..., 1;n1, ..., nm) shake concordant

to bJ , the closure of J into a link.
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Proof. Suppose L intersects the subdisk Di of E' geometrically ni times for

i = 1, ...,m. Then L can be obtained by band summing a copy of L with T , a

(n1, ..., nm) shaking of the m-component unlink, as in Figure 3.2.

L1 L2

L1 L2

L1 L2

Figure 3.2. E↵ect of bands on fusing components.

Hence there exists a smooth, compact, connected, genus 0 surface S ⇢ S3 ⇥ [0, 1]

that cobounds L ⇢ S3 ⇥ {0} and the disjoint union L t Tm ⇢ S3 ⇥ {1}.
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We may construct S such that it lies entirely in the complement of

((E'/ ti '(Di))⇥ [0, 1])⇥ [0, 1] ⇢ S3 ⇥ [0, 1].

Replace ((E'/ ti '(Di)) ⇥ [0, 1]) ⇥ {t} at each t 2 [0, 1] with the complement of

string link J ⇢ D2 ⇥ [0, 1]. Then S cobounds I(L, J,E') ⇢ S3 ⇥ {0} and a disjoint

union of L and a (n1, ..., nm) shaking of bJ in S3 ⇥ {1}. As L is slice, we can cap it o↵

to obtain a (1, ..., 1;n1, ..., nm) shake concordance between I(I, J,E') and bJ . ⇤

The proof of the “if” direction follows immediately from this lemma, for if I(L, J,E')

is concordant to I(L0, J 0,E0
'0) then by the lemma I(L, J,E') is (1, ..., 1;n1, ..., nm)

shake concordant to bJ and I(L0, J 0,E0
'0) is (1, ..., 1;n0

1, ..., n
0
m) shake concordant to

bJ 0. Hence, bJ is (n1, ..., nm;n0
1, ..., n

0
m) shake concordant to bJ 0.

4.2. Proof of “only if” direction. Similarly, we begin by proving the following

lemma.

Lemma 3.4. If L is (1, ..., 1;n1, ..., nm) shake concordant to L0, then L is concor-

dant to I(L00, J 0,E') for some string link J 0 such that bJ 0 = L0, slice link L00, and

embedded multidisk E' that respects L00.

Proof. Let F1, ..., Fm be the m disjoint genus zero surfaces in S3 ⇥ [0, 1] with

boundary L ⇢ S3 ⇥ {0} and sh(L0) ⇢ S3 ⇥ {1} where sh(L0) is a (n1, ..., nm) shaking

of L0. That is, the surfaces Fi determine a shake concordance between L and L0.

We can isotope each Fi such that the projection map S3⇥ [0, 1] ! [0, 1] is a Morse

function when restricted to each Fi and such that all local maxima occur at level {4
5},

split saddles at level {3
5}, join saddles at level {2

5}, and local minima at level {1
5} (as
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in proof of Proposition 3.5 in [CR16]). Hence, the level of {1
2} of each surface Fi is a

connected component Mi of some m component link M . Notice, L is concordant to

M . See Figure 3.3.

L1' L2' -L2' L2'

L1 L2

1/2

2/5

1/5

3/5

4/5

Figure 3.3. Morse function on the shake concordance.

Moreover, M is a fusion of sh(L0) and a trivial link T (corresponding to the local

minima of each Fi). That is, M is obtained by attaching bands between distinct

components of sh(L0) and T until there are only m component.

The (n1, ..., nm) shaking of the m-component trivial link is itself a trivial link of

N = ⌃ini components which we denote TN . Hence, sh(L0) = I(Tr, J
0,E') for some

E' respecting TN .

Suppose that we are able to isotope our fusion bands as to avoid E'⇥ [0, 1]. Then

we have M = I(T 0, J 0,E'), where T 0 is a link obtained by fusing TN and the trivial

link T . Note T 0 is slice. Hence, L is concordant to M = I(T 0, J 0,E'), as desired.

However, suppose the fusion bands cannot be isotoped to avoid intersecting E' ⇥

[0, 1]; such as in Figure 3.4. Then embed '0 : E0 ,! S3, where E0 is a multidisk with

subdisks D1, ..., Dm, such that E0
'0 ⇥ [0, 1] intersects M as a trivial string link so that

each Di ⇥ [0, 1] contains a trivial ni component string link corresponding to the ith
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L1 L2

Figure 3.4. Infected link with fusion bands.

set of components in the (n1, ..., nm) shaking of L0. Moreover, we may choose this

embedding so that it avoids intersecting the fusion bands, T , and E' ⇥ [0, 1].

Now, we may infect M at E0
'0 with the string link J 0#� J 0; see Figure 3.5. This

is a slice string link, thus M is concordant to the I(M,J 0#� J 0,E0
'0). We can think

of inflecting along E0
'0 by J 0#�J 0 as infecting along E00

'00 by J 0 and along E000
'000 by �J 0

where

E00
'00 ⇥ [0, 1] := E0

'0 ⇥ [0, 0.5], E000
'000 ⇥ [0, 1] := E0

'0 ⇥ [0.5, 1].

Now define L00 = I(M,�J 0,E000
'000); see Figure 3.6. Then notice M is concordant

to I(L00, J 0,E00
'00). Observe, L00 is slice since it’s the fusion of a trivial link T and an

infection of a trivial link by the slice string link J 0#� J 0. Hence, J is concordant to

I(L00, J 0, E 0
1), as desired. ⇤

Now suppose L is shake concordant to L0. Then there are some surfaces F1, .., Fm

that bound a shaking of L in S2 ⇥ {0} and a shaking of L0 in S2 ⇥ {1}. As in the
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L1 L2

Figure 3.5. Infecting link to avoid fusion bands.

proof above, we may construct a Morse function f : S3 ⇥ [0, 1] ! [0, 1] such that

when restricted to each fi, all maxima occur at level {4
5}, split saddles at level {

3
5},

join saddles at level {2
5}, and local minima at level {1

5}. Hence, the level {1
2} of each

surface Fi is a connected componentMi of somem component linkM . Moreover,M is

(1, ..., 1;n1, ..., nd) shake concordant to L andM is (1, ..., 1; s1, ..., sd) shake concordant

to L0. Thus, by the lemma, M is concordant to I(L, J,E') and I(L0, J 0,E0
'0) for L

and L0 slice and E' and E0
'0 meeting the conditions in the statement of the theorem.
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L1 L2

Figure 3.6. The link that is infected to obtain M .

5. Classification of Shake Slice Links

We are also able to classify shake slice links.

Corollary 3.5. The m-component link M is (strongly) shake slice if and only

if the link obtained by string link infection I(L, J,E') is slice for some:

• m-component slice link L,

• m-component string link J with closures bJ = M ,

• and embedding of multidisk E' with m subdisks that (strongly) respect L.

Proof. A link M is (strongly) shake slice if and only if it is (n1, ..., nm; 1, ..., 1)

(strongly) shake concordant to the trivial link. By Theorem 3.2 this is equivalent to
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the links obtained by string link infection I(L, J,E') and I(L0, J,E0
'0) being concor-

dant. However, we note that I(L0, J,E0
'0) is slice since L0 is slice and bJ 0 = T . ⇤

Therefore, to find a shake slice link that is not slice, one need just find a link M

that is not slice, a slice link L, and a proper infection I(L, J,E') that is slice. There

are a number of results of this type. For instance, Cochran, Friedl, and Teichner

proved in [CFT09, Theorem 1.5] that slice links can be generated by infecting a slice

link by any link meeting some simple conditions, but their work places restrictions

on the multidisk that prevent it from being a proper embedding. In fact, as we’ll see

in chapter 5 section 6, it appears to be a hard problem to find shake slice links that

are not slice.
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CHAPTER 4

Invariants of Shake Concordance

Our goal in this chapter is to see what invariants of concordance are also pre-

served up to strong shake concordance and shake concordance. Our classification

theorem from the last chapter will be useful, as it implies that invariants that are

preserved under concordance and a particular class of string link infection will be

invariants also of shake concordance. This will let us show in section 1 that the first

non-vanishing Milnor invariant is preserved under shake concordance. In section 2

we’ll show that the zero surgery manifolds obtained from shake concordant links are

homology cobordant. We will then consider a number of other classical invariants in

section 3.

1. Milnor Invariants

1.1. Definition. In [Mil54] and [Mil57] Milnor defined a family of invariants

for links, the Milnor µ̄ invariants. For an m component link L, the Milnor invariants

µ̄L(I) are defined for each multi-index I = i1i2...ik where 1  ij  m and can

be thought of as the higher order linking numbers of L. We say that the Milnor

invariant has length |I| = k. Indeed, µ̄L(ij) = lk(Li, Lj), the linking number between

components Li and Lj.

The invariants are defined algebraically from the link group by measuring how

deep in the lower central series of the group longitudes lie. This gives rise to an

indeterminacy in the higher order invariants if the lower order invariants do not vanish.
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In particular, µ̄L(I) is defined modulo the greatest common divisor of all µ̄L(J) where

J is obtained by removing at least one index from I and possibly permuting the

remaining elements cyclicly. For this reason, it is often of particular interest to study

the first non-vanishing Milnor invariant, that is multiindex I such that µ̄L(I) 6= 0 and

µ̄L(J) = 0 for all |J | < |I|.

If L0 is a sublink of L and I contains only indices that correspond with components

contained in the sublink L0, then µ̄L0(I) is well-defined and in fact µ̄L0(I) = µ̄L(I). All

µ̄T (I) vanish for a trivial link T . The Milnor invariants are invariants of concordance

[Cas75], and hence they all vanish for L slice.

The Milnor invariant µ̄L(ijk) has a geometric interpretation [Coc90]. Let ⌃i,⌃j,

and ⌃k be Seifert surfaces for components Li, Lj, and Lk of L. Then a count of the

points which constitute ⌃i \ ⌃j \ ⌃k, with signs determined from the orientation

induced by the Seifert surfaces, gives µ̄L(ijk). In particular, if L = L1 t L2 t L3 is

the Borromean rings depicted in Figure 4.1, then µ̄L(123) = ±1, the sign depending

on which orientation we assign the components, and µ̄L(ij) = lk(Li, Lj) = 0 for

1  i, j  3.

Figure 4.1. Borromean Rings
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1.2. A useful lemma about Milnor invariants. We’ll need the following

lemma in the next subsection where we prove that the first non-vanish Milnor in-

variant is preserved under shake concordance. To do this, we’ll apply [Coc90, Theo-

rem 8.13] that shows that the first nonvanishing Milnor invariants are additive under

exterior band sums.

Lemma 4.1. Let I be a multi-index which contains the indices {1, ...,m} and let

ki be the number of occurrences of the index i in I (ki � 1). Let L = L1 t ...tLm be

an m-component link with µ̄(I 0) = 0 whenever |I 0| < |I| and let J be an m-component

string link whose closure bJ has µ̄ bJ(I
0) = 0 whenever |I 0| < |I|. Let ' : E ! S3 be

a proper m-multi-disc in (S3, L) that respects L. Then I(L, J,E') is also a link with

µ̄I(L,J,E')(I
0) = 0 whenever |I 0| < |I| and

µ̄I(L,J,E')(I) = µ̄L(I) + µ bJ(I).

Proof. If the embedded multidisk E' strongly respects L, then the desired result

follows immediately from [JKP+14, Lemma 4.1]. Otherwise, we do not meet the

conditions of the lemma, however the proof generalizes to accommodate this case,

which we o↵er here for completeness.

Suppose Di \ Lj contains aij positive bij negative intersection points. Note aii �

bii = 1 for all 1  i  m and aij � bij = 0 for i 6= j. Denote ai =
P

j aij and

bi =
P

j bij. Let J 0 be the oriented string link generated by taking ai parallel copies

of the i-th component Ji of J and bi parallel copies of Ji with opposite orientation,

for i = 1, ...,m. Notice, I(L, J,E') is the outcome of performing band sums on the

split union of L and bJ 0 as in Figure 3.2.
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In bJ 0 label each parallel copy of bJi with an index j 2 {1, ..., ai+bi} for i = 1, ...,m.

Define the function g : {1, ...,
P

i(ai + bi)} ! {1, ...,m} which sends the index of a

parallel copy of bJi to i and the function h : {1, ...,
P

i(ai + bi)} ! {1, ...,m} which

sends the index of a parallel copy of bJi to j where Lj is the component of L that

the parallel copy is adjoined to by band sum. Choose a parallel copy of bJi for each

occurrence of i in I, for all i = 1, ...,m, and form the multi-index I 0 by replacing each

occurrence of i in I by the index of the parallel copy of bJi chosen. We need to sum

over all such multi-indices:

X

{I0|h(I0)=I}

µ̄ bJ 0(I
0) =

X

{I0|h(I0)=I, g(I0)=I}

µ̄ bJ 0(I
0) +

X

{I0|h(I0)=I, g(I0) 6=I}

µ̄ bJ 0(I
0).

Recall that reversing the orientation on a single component Li of a link L changes

the sign of the Milnor invariant µ̄L(I) by (�1)ki where ki is the number of times i

appears in I. Therefore µ̄ bJ 0(I 0) vanishes when g(I 0) 6= I since aij = bij for i 6= j and

therefore the multi-indices I 0 satisfying h(I 0) = I and g(I 0) 6= I occur in pairs with

µ̄ bJ 0(I 0) of opposite sign by replacing for some i the choice of the parallel copy of bJi

that is adjoined to Lj by band sum for i 6= j with a parallel copy of bJi of opposite

orientation that is also adjoined to Li band sum. We are left with,

X

{I0|h(I0)=I, g(I0)=I}

µ̄ bJ 0(I
0) =

X

{I0|h(I0)=I, g(I0)=I}

µ̄ bJ(I) ·
Y

j2I0
r
�j

j

where rj 2 {±1} is �1 if the parallel copy of a component of bJ with index j chosen

uses the reverse orientation, and is +1 otherwise, and �j is defined to be the number

of times that j appears in I 0. Therefore,

X

{I0|h(I0)=I, g(I0)=I}

µ̄ bJ 0(I
0) = µ̄ bJ(I) ·

X

{I0|h(I0)=I, g(I0)=I}

Y

j2I0
(ai � bi) = µ̄ bJ(I)
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and we have by [Coc90, Theorem 8.13]

µ̄I(L,J,E')(I) = µ̄L(I) + µ̄ bJ(I).

⇤

1.3. Invariance of First Non-vanishing Milnor Invariants.

Theorem 4.2. If two links L and L0 are shake concordant, then they have equal

first non-vanishing Milnor invariants. That is, if for some multi-index I, µ̄L(I) 6= 0

and µ̄L(J) = 0 for all |J | < |I|, then µ̄L(I) = µ̄L0(I) and µ̄L0(J) = 0 for all |J | < |I|.

Proof. Suppose J is shake concordant to J 0. Then we can find slice links L and

L0, string links s and s0 such that bs = J and bs0 = J 0, and multidisks E' and E'0

respecting L and L0, respectively, such that I(L, s,E') is concordant to I(L0, s0,E'0).

Hence for any multi-index I,

µ̄I(L,s,E')(I) = µ̄I(L0,s0,E'0 )(I).

Moreover, by Lemma 4.1 we have

µ̄I(L,s,E')(I) = µ̄J(I) + µ̄J(I), µ̄I(L0,s0,E'0 )(I) = µ̄L0(I) + µ̄J 0(I).

Since L and L0 are slice, all of their Milnor invariants vanish, hence we have,

µ̄J(I) = µ̄I(L,s,E')(I) = µ̄I(L0,s0,E'0 )(I) = µ̄J 0(I).

⇤

Corollary 4.3. Linking number is an invariant of shake concordance. That is,

if L and L0 are shake concordant, then lk(Li, Lj) = lk(L0
i, L

0
j) where i 6= j.
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In general, though, not all Milnor invariants are preserved by shake concordance.

For instance, consider the links L in Figure 4.2 (A) and L0 in Figure 4.2 (D). L is

shake concordant to L0. We can see this by taking a 3-component shaking of the

component L4 and adjoining two of them via band sum to L2 as shown in Figure 4.2

(B) and (C).

Notice, however, that the sublink S = L1 t L2 t L3 of L is the Borromean rings

and hence we have µ̄L(123) = µ̄S(123) = 1. Whereas the sublink S 0 = L0
1tL0

2tL0
3 of

L0 is a trivial link and hence we have µ̄L0(123) = µ̄S0(123) = 0. This does not violate

the above theorem since µ̄L(34) = 1 = µ̄L0(34).

2. Homology Cobordism

We call two closed, oriented 3-manifold M1 and M2 homology cobordant if there

exists a compact, oriented 4-manifold W such that @W = M1 t �M2 and the maps

induced by inclusion Hn(Mi;Z) ! Hn(W ;Z), i = 1, 2, are isomorphisms for all n.

It is well known that if two links L and L0 are concordant, then their zero surgery

manifolds ML and ML0 are homology cobordant.

However, it is not necessary that the links be concordant for their zero surgery

manifolds to be homology cobordant. For instance, Cochran, Franklin, Hedden, and

Horn [CFHH13] exhibit non-concordant, topologically slice knots with homology

cobordant zero surgery manifolds. Moreover, Cha and Powell [CP14] provide an

infinite family of links with unknotted components that all have identical Milnor in-

variants and homeomorphic zero surgery manifolds with homotopy class of meridians

preserved, but none of which are pairwise concordant.
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L1

L2

L3
L4

(a) (b)

(c)

L'1

L'2L'2

L'3
L'4

(d)

Figure 4.2. Shake concordant links with di↵ering µ̄(123).

We show that shake concordance of links is a su�cient condition for homology

cobordism of the associated zero surgery manifolds. Hence, families of links that are

shake concordant but not concordant o↵er further examples of non-concordant links

with homology cobordant zero surgery manifolds.

Proposition 4.4. Suppose m-component links L and L0 are shake concordant.

Then the zero surgery manifolds ML and M 0
L are homology cobordant.
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Proof. This has already been shown when m = 1 in ([CR16], Proposition 5.1)

which generalizes as follows. Recall WL,L0 , the 4-manifold obtained by attaching

2-handles along L and L0, has boundary components ML and �ML0 . We have

Hn(WL,L0) ⇠=

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

Z n = 0, 3

0 n = 1

Z2m n = 2

0 n � 4

, Hn(ML) ⇠= Hn(ML0) ⇠=

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

Z n = 0, 3

Zm n = 1

Zm n = 2

0 n � 4

.

We will modify WL,L0 such that the inclusion maps from ML and ML0 into the

modified 4-manifold induce isomorphisms on homology. Let ⌃1, ...,⌃m ,! WL,L0 be

the embedded spheres guaranteed by the definition of shake concordance of links.

We can perform surgery on each ⌃i by removing a neighborhood of ⌃i, which is

di↵eomorphic to S2 ⇥ D2, and gluing in a copy of D3 ⇥ S1, which we can do since

@(S2 ⇥ D2) = S2 ⇥ S1 = @(D3 ⇥ S1). Denote the resulting 4-manifold W . Notice,

this the e↵ect of killing half the generators of the second homology group by killing

(ēi, ēi), for i = 1, ...,m. Also, this introduces m generators for the first homology

group. A Mayer-Vietoris argument verifies

Hn(W ) ⇠=

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

Z n = 0, 3

Zm n = 1

Zm n = 2

0 n � 4

and that the induced maps from inclusion give the desired isomorphisms. ⇤
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In [Har08] Harvey introduced the real-valued homology cobordism invariants ⇢n

for closed 3-manifolds. It follows from the above proposition that ⇢n, and other

homology cobordism invariants, can be treated be invariants of shake concordance of

links.

3. Classical Invariants

We begin be recalling the definitions of some classical invariants of concordance.

Then we discuss if these remain invariant under shake concordance or strong shake

concordance of links.

3.1. Algebraic Concordance Class. Every knot K ⇢ S3 bounds an oriented

Seifert surface F in S3. There is a Seifert form VK defined on H1(F ;Z), which can

be represented be a 2g⇥ 2g Seifert matrix where 2g is the rank of H1(F ;Z). We call

K algebraically slice if VK is metabolic, that is, if VK vanishes on a half-dimensional

summand ofH1(F ;Z). We call knotsK1 andK2 algebraically concordant if VK1��VK2

is metabolic. Concordance of knots implies algebraic concordance. And if a knot is

slice, then it is algebraically slice; although the converse does not hold [CG86],

[CG78].

3.2. Signature of a knot. Let M be the Seifert matrix for a knot K. Then the

Tristram-Levine signature �! is defined [Tri69] to be the signature of the hermitian

form

(1� !)M + (1� !̄)MT

where ! 2 C such that |!| = 1 and ! 6= 1. Note this form is nonsingular when !

is not a root of the Alexander polynomial of M , �M(t) = det(M � tMT ). In this
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setting, signature is an invariant of algebraic concordance and the signatures of an

algebraically slice knot vanish [Mur65], [Liv05].

3.3. Arf Invariant. For F the Seifert surface of a knot K, H1(F ;Z/2Z) has

a quadratic form which counts the number of full twists in the neighborhood of

an element of the homology group modulo 2. The Arf invariant of K is the Arf

invariant of this quadratic form, taking values 0 or 1. It is determined by the algebraic

concordance class of a knot and vanishes for algebraically slice knots.

3.4. Invariance Under Strong Shake Concordance. It follows from Propo-

sition 4.4 that invariants of homology cobordism are invariants of shake concordance.

In particular, Levine’s algebraic knot concordance class [Lev69b], [Lev69a] is deter-

mined by the zero surgery manifold of a knot via the Blanchfield form and preserved

under homology cobordism [Tro73]. This give rise to the following corollary of Propo-

sition 4.4:

Corollary 4.5 (Corollary 5.2 in [CR16]). If knots K and K 0 are shake concor-

dant, then the algebraic concordance class of K and K 0 agree and hence K and K 0

have equal signatures and Arf invariants.

What can be said in the case of links? If L and L0 are strongly shake concor-

dant, then each corresponding pair of components Li and L0
i are shake concordant.

Therefore we conclude:

Corollary 4.6. If L = L1t...tLm and L0
1t...tL0

m are strongly shake concordant,

then Li and L0
i have the same algebraic concordance class and hence equal signatures

and Arf invariant for all i = 1, ...,m.
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3.5. Noninvariance Under Shake Concordance. If L = L1 t ... t Lm and

L0 = L0
1t ...tL0

m are shake concordant, but not strongly shake concordant, it doesn’t

necessarily follow that the components Li and L0
i are shake concordant as knots. In

fact, as the proof of Proposition 2.8 shows, we can have any two knots K and J that

are corresponding components of shake concordant links. Therefore, no knot invariant

of concordance is preserved in the components of a link under shake concordance.

Nevertheless, we can still find numerous obstructions to a knot being shake slice, as

we’ll see in the next chapter.
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CHAPTER 5

Obstructions to Shake Sliceness

In the previous chapter, we showed that the first non-vanishing Milnor invariant

is an invariant of shake concordance; this gives us a significant obstruction to shake

concordance. Moreover, we have seen that no concordance invariant is preserved for a

component of a link under shake-concordance. However, we here show that they may

still serve as obstructions to a link being shake slice: such as the Milnor invariants in

section 1 and the Arf invariant in section 2. In fact, we are able to show that shake

slice links are slice in a homology 4-ball in section 3. This let’s us consider the tau

invariant in section 5. We also show shake slice links are link homotopic to the trivial

link in section 6. We close by discussing in section 7 the di�culty of finding a link

that is shake slice but not slice.

1. Milnor Invariants

Proposition 5.1. Suppose L = L1 t ...tLm is shake slice. Then all of Milnor’s

µ invariants for L vanish. In particular, lk(Li, Lj) = 0 for all i 6= j.

Proof. Since L is slice, it is shake concordance to a trivial link T . All Milnor

invariants of T vanish. The result then follows immediately from Theorem 4.2 ⇤

2. Arf Invariant

We argue that the the Arf invariant vanishes for all components of a shake slice

link. Moreover, recall that the definition of the Arf invariant can be extended to
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proper links, that is, links L such that

X

i 6=j

lk(Li.Lj) ⌘ 0 mod 2.

Note that shake slice links and sublinks of shake slice links are proper as lk(Li, Lj) = 0

for i 6= j. Suppose a planar surface S3 ⇥ [0, 1] bounds L ⇥ {0} [ K ⇥ {1} for a

proper link L and some knot K. Then Arf(K) depends only on L so we may define

Arf(L) := Arf(K) for some such K [Hil12, p. 45].

Theorem 5.2. If a link L = L1 t L2 t ... t Lm is shake slice, then:

• Arf(L) = 0,

• Arf(Li) = 0 for i = 1, ...,m, and

• Arf(Li t Lj) = 0 for i 6= j.

Proof. Since L is shake slice, there exists L0 a shaking of L and a planar surface

with boundary L0 ⇥ {0} [ T ⇥ {1} where T is a trivial link. Hence, by capping

o↵ all but one unknotted component of T , we have a planar surface cobounding L0

and an unknot U , hence Arf(L0) = Arf(U). By fusing components of L we obtain

a knot K and hence there exists a planar surface bounding L ⇥ {0} [ K ⇥ {1},

therefore Arf(L) = Arf(K). Note there also exists a planar surface that bounding

L ⇥ {0} [K ⇥ {1} obtained by fusing pairs of parallel copies of each component of

Li with opposite orientation to obtain L then fusing the components of L as before

to obtain K. Hence,

Arf(L) = Arf(K) = Arf(L0) = Arf(U) = 0.
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Moreover, since L is shake slice, there exists a sublink L0
i of L

0 consisting of an

odd number of parallel copies of Li and even number of parallel copies of each Lj for

j 6= i such that a planar surface has boundary L0
i⇥{0}tS⇥{1} for some trivial link

S. Again, capping o↵ all but one component of S, we have Arf(L0
i) = Arf(U). But

also notice that we can fuse pairs of parallel copies constituting L0
i to obtain a planar

surface cobounding L0
i and Li. Hence,

Arf(Li) = Arf(L0
i) = Arf(U) = 0

for all i = 1, ...,m.

Finally, Beiss [SB90] has shown that for a two component link L12 = L1 t L2 we

have

Arf(L12) = Arf(L1) + Arf(L2) + µ̄L12(1122) mod 2.

Hence, since the Milnor invariants of L all vanish, we have for any two-component

sublink Li t Lj of L,

Arf(Li t Lj) = 0,

where 1  i < j  m.

⇤

3. Homologically Slice

Given a shake slice link L, we are interested in if it is slice, that is, if L bounds

m disjoint disks in a 4-ball. We can show something slightly more general is true.

Proposition 5.3. Suppose the m-component link L is shake slice. Then L bounds

m disjoint disks in a homology 4-ball. That is, L is homologically slice.
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Proof. Consider anm-component shake slice link L. Then L is shake concordant

to the m-component trivial link Tm. Note the zero surgery manifold MTm is di↵eo-

morphic to #m
i=1S

1 ⇥ S2. Hence by Proposition 4.4 the zero surgery manifold ML is

homology cobordant to #m
i=1S

1 ⇥ S2. Let W denote the 4-manifold of the homology

cobordism. We modify W to obtain a homology 4-ball. First, cap o↵ #m
i=1S

1 ⇥ S2

with \mS1 ⇥D3 to obtain a 4-manifold which we denote W 0. Notice @W 0 = ML and

Hn(W
0) ⇠=

8
>>>>>>>><

>>>>>>>>:

Z n = 0

Zm n = 1

0 n � 2

.

Attach a 0-framed 2-handle to W 0 along each of the m meridians of L, denote the

resulting 4-manifold W 00. Note @W 00 = 0. This kills the first homology group of W 0,

so that W 00 homology ball. To see this consider the Mayer-Vietoris exact sequence:

... ! H1(#
m
i=1S

1⇥D2)
(i⇤,j⇤)���! H1(W

0)�H1(D
2⇥D2)

k⇤�l⇤���! H1(W
00)

@⇤�! H0(#
m
i=1S

1⇥D2) ! ...

We observe H1(D2 ⇥ D2) = 0 and i⇤ is an isomorphism since H1(#m
i=1S

1 ⇥ D2) is

generated by the meridians of L. Hence, k⇤ � l⇤ = 0. Moreover, @⇤ is the zero map

since W 00 is connected and hence H1(W 00) = 0. The co-core of each 2-handle is a disk

bounded by a component of Li in W 00, i = 1, ..,m. Note these disks are disjoint. ⇤

In particular, each component Li of L is slice in a homology 4-ball. Cha, Liv-

ingston, and Ruberman have shown in [CLR08, Theorem 3] that it then follows that

Li is algebraically slice. Hence we obtain:
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Corollary 5.4. If L = L1 t ... t Lm is shake slice, then each Li is algebraically

slice. In particular, the signatures and Arf invariant vanish for each Li, i = 1, ...,m.

4. Tau

Ozsváth and Szabó have defined an integer invariant ⌧ for knots using the knot

filtration on the Heegaard Floer complex dCF . Like the knot signature, it is additive

under connect sum and preserved under concordance, vanishing for slice knots. The

tau invariant serves as a lower bound for the slice genus g⇤(K) of a knot, the minimal

genus of a oriented surface in D4 that has boundary K ⇢ S3 = @D4. In fact,

something stronger is true:

Theorem 5.5 (Theorem 1.1 in [OS03]). Let W be a smooth, oriented four-

manifold with b+2 (W ) = 0 = b1(W ) and @W = S3. If ⌃ is any smoothly embedded

surface-with-boundary in W whose boundary lies on S3, where it is embedded as the

knot K, then we have the following inequality:

2⌧(K) + |[K]|+ [⌃] · [⌃]  2g(⌃)

where |[K]| denotes the L1 norm of [K] 2 H2(W ) which evaluates [K] = s1 · e1 + ...+

sb · eb, for some orthonormal basis ei and si 2 Z, to be

|[⌃]| = |s1|+ ...+ |sb|.

Cochran and Ray have shown that ⌧ is not invariant under shake concordance for

knots, in fact, they o↵er an infinite family of knots that are pairwise shake concordant,

but which take values for ⌧ that increase without bound [CR16, Proposition 4.10]. It

follows that ⌧ cannot be an invariant of (strong) shake concordance of links. However,
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they also show that ⌧ vanishes for shake slice knots [CR16, Corollary 5.3] from which

it immediately follows that ⌧ vanishes for each component of a strongly slice link. We

note that this is also true more generally for each component of a shake slice link.

Corollary 5.6. If L is shake slice then ⌧(Li) = 0 for each component Li of L,

i = 1, ...,m.

Proof. Follows immediately from Proposition 5.3 and Theorem 5.5 ([OS03, The-

orem 1.1]). ⇤

5. Link Homotopy and Band Pass Equivalence

Any link can be transformed into the unlink via a series of crossing changes. If we

restrict the crossing changes so that both strands belong to the same link component,

then we recover the notion of link homotopy. It is well known that slice links are link

homotopic to the trivial link [Gol79], [Gif80]. We will see the same is true of shake

slice links. In fact, we can say something stronger.

A band pass move on a link is accomplished by keeping a diagram fixed outside

a local change as in Figure 5.1 where both strands of each band belong to the same

link component. We call links L and L0 band pass equivalent if L can be deformed

into L0 via band-pass moves and isotopy.

Building o↵ of work of Taniyama and Yasuhara in [TY02], Martin showed the

following:

Theorem 5.7 (Corollary 5.2 in [Mar13]). For links L = L1 t ... t Lm and L0 =

L0
1t...tL0

m with vanishing pairwise linking numbers, L and L0 are band-pass equivalent
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Figure 5.1. A band pass move.

if and only if:

Arf(Li) = Arf(L0
i)

µ̄L(ijk) = µ̄L0(ijk)

µ̄L(iijj) ⌘ µ̄L0(iijj) mod 2

for all i, j, k 2 {1, ...,m}.

This gives another obstruction to shake concordance.

Corollary 5.8. If L is shake slice, then L is band-pass equivalent to the trivial

link.

Proof. Since L = L1 t ... t Lm is shake slice, it has vanishing pairwise linking

numbers. Moreover, we showed Arf(Li) = 0 for all i = 1, ...,m and that the Milnor

invariants of L all vanish. ⇤

Since the strands of each band of a band pass move belong to the same link, band

pass equivalence between links implies that the links are link homotopic. Hence we

also recover the following obstruction:

Corollary 5.9. If L is shake slice, then L is link homotopic to the trivial link.
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6. In Pursuit of a Non-Slice, Shake Slice Link

The problem of determining if every shake slice knot is slice has been open for

40 years; it is listed in the Kirby’s problem list [Kir95]. The essential di�culty in

answering it is found in the fact that shake slice knots are slice in a homology 4-ball

and there is no invariant known to distinguish slice knots from homologically slice

knots.

While one may hope for the situation to be better for links for an arbitrary

number of components, one sees we run into a similar di�culty. We have from

Proposition 5.3 that shake slice links are homologically slice and thus each component

is homologically slice. Hence, we cannot expect to distinguish a shake slice link from

a slice link by examining its components. It is then natural to consider the linking

of the components, but Proposition 5.1 tells us that all of Milnor’s higher order

linking numbers vanish for shake slice links, as they do for slice links. Similarly,

we saw that the generalized Arf invariant vanishes for shake slice links. Of course,

there are numerous other invariants one could study. For instance, it is believed that

Rasmussen’s s-invariant may be able to distinguish between a knot being slice in D4

and it being slice in a homology D4.
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