Knotting and linking in 4-dimensions.

Prof. Shelly Harvey
(Low dimensional) Topology
Study spaces that locally look like

$$
\mathbb{R}^{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{i} \in \mathbb{R}\right\}
$$

called n-dimensional manifolds

Ex $n=2$ (surfaces)

In topology, we are allowed to bend, twist, stretch spaces and we think of them as the sam
ie. distances and angles are not preserved

same in topology (not in geometry)

Pop quiz:
Which spaces are the same?

How to distinguish them? consider "knots" inside of them.
$6^{\prime \prime}$ essential" curves

What about higher dimensions?
$\mathrm{n}=3 \quad 3$-dimensions
locally looks like $\mathbb{R}^{3}=\{(x, y, z) \mid x, y, z \in \mathbb{R}\}$ can't "draw" in the usual sense What types of objects live in $3 D$?

knotted circles

knotted surfaces

Def: A knot in \mathbb{R}^{3} is a "smooth" simple closed curve in \mathbb{R}^{3}. (or locally flat)
Exs:

unknot

lest-handed trefoil

figure eight

Not allowed:

We say two knots are the same (isotopic) if we can continuously deform one to the other through knots (i.e. never cut or pass the knot through itself).

Quiz: Do you recognize this knot?

The diagram / picture of a knot can be complicated!

Remark: Any (compact, without boundary) 3-dimensional manifold can be "drawn" (not unique) as a weighted link (knot with multiple components).

$$
=S^{\prime} \times S^{\prime} \times S^{\prime}
$$

$\uparrow 3$-dimensional torus

How can we distinguish knots?
A: Knot invariants.

input
knot

knot invariant computer
integer matrix polynomial group ring field

Important: if two knots are the same, they should have the same output!

Two types of invariants

1. Defined using diagram \leftarrow related to algebra.

Let $\operatorname{cr}(K)=\#$ of crossing in a diagram.
Q. Is this a knot invariant?
$c(K)=\min \{\#$ of crossing in a diagram for $K\}$.
$* c(K)=0 \Longleftrightarrow K=$ unknot.

* Only knots with $c(K)=3$ is trefoil
* $c(K)=4 \Rightarrow K=$ figure-eight
* $c(K)=5$ more than one!

2. Define using the 3-dimensional manifold

$$
\mathbb{R}^{3} \cup N(K)
$$

C thickened
neighborhood of K

can fly around in space but must avoid the knot.

Ex: Fundamental group of K.

$$
\pi_{1}(K):=\left\{\begin{array}{c}
\text { loops in } \mathbb{R}^{3} \\
\text { missing } K
\end{array}\right\} / \text { "homotopy" }
$$

Very powerful group but is difficult to use. (see MATH 444).

Easier example:
Let K be a knot. The K bounds a smoothly embedded "oriented" surface S, called a seifert surface

Q. Is the seifert matrix an invariant?

No, depends on seifert surface chosen

ϕ matrix

$$
\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)
$$

both unknots?

Can use seifert matrix to get a knot invariant - the Alexander polynomial.

Define:

$$
\begin{aligned}
& \Delta(K)=\operatorname{det}\left(V(K)-t V(K)^{\top}\right) \\
& \begin{aligned}
E x: V=V(K)=\left(\begin{array}{cc}
-1 & -1 \\
0 & -1
\end{array}\right) \quad V-t V^{\top}=\left(\begin{array}{cc}
-1+t & -1 \\
t & -1+t
\end{array}\right) \\
\begin{aligned}
\Delta(K)=\operatorname{det}\left(V-t V^{\top}\right) & =(t-1)^{2}+t \quad \\
& =t^{2}-t+1
\end{aligned}
\end{aligned} \begin{array}{c}
\text { Note: } K=\text { trefoil } \\
\text { in this example }
\end{array}
\end{aligned}
$$

This gives more info than $c(k)$ and can be extracted in many ways, including from $\pi_{1}(K)$, the fundamental group.

$\Delta=1$

$\Delta=t^{2}-t+1$

$\Delta=t^{2}-3 t+1$
\Rightarrow all different knots

Can also compute via diagrams

L+

$$
\begin{aligned}
& \Delta(0)=1 \\
& \Delta\left(L_{+}\right)-\Delta\left(L_{-}\right)=\left(t+t^{-1}\right) \Delta\left(L_{0}\right)
\end{aligned}
$$

due to J. Conway

What about 4-dimensions?
4-dimensions in the most difficult and most interesting dimension!

- try to push low-dimensional techniques up (e.g. cut and paste, Heegaard diagrams/ trisections, Kirby diagrams)
- try to push high dimensional surgery techniques.

For 4D, we are interested in knots up to "Concordance" instead of isotopy.

3D: unknot in the only knot that bounds a seifert surface that is a disk (no "holes")

Start with a knot in $\mathbb{R}^{3} \subseteq \mathbb{R}^{4}$ $(x, y, z) \rightarrow(x, y, z, 0)$
the $t=0$ plane
 (time)

What kind of surface can it bounds in \mathbb{R}_{+}^{4}

- Take Seifert surface in \mathbb{R}^{3} in push interior into \mathbb{R}^{4}
- can get simpler surfaces in theory.

Def: A knot is slice if it bounds a smooth disk in \mathbb{R}_{+}^{4}.

$$
\text { * = two different categories } \xlongequal{>} \text { smooth } \text { locally flat }
$$

Ex 1: (A nibbon knot)

Lemma: A ribbon knot is always slice.

Slice-Ribbon Conjecture: Is every slice knot ribbon

Open conjecture - if you solve, you will be famous.

Recall level sets of surfaces from calculus slices in time

can combine the level sets to produce a surface.

Ex 2: 9_{46} knot is slice (also ribbon)

$t=0$
$t=1 / 10$
$t=1 / 5$
$t=1$

$$
\begin{gathered}
t=0 \\
t=1 / 10 \\
\cdots \quad t=1 / 5 \\
t=1
\end{gathered}
$$

How to show a particular knot is not slice?

* If's HARD *
- no algorithm to determine if a given knot is slice (or even ribbon) open problem

The (Piccirillo, a018): The Conway knot is not slice.
Annals of Math
$r_{\text {smoothly }}$

known to (topologically) slice and is a mutant of a slice knot

How to show a knot or not slice.
Start with seifert surface and create seifert matrix V

Want to get special invariant that is "trivial" for slice knots.

Prop: If a knot is slice then its signature is 0 .
signature of $K, \sigma(K)$

Linear Algebra; $V+V^{\top}$ has real eigenvalues
Define

$$
\begin{aligned}
\sigma(K):= & \left(\text { \#pos eigenvalues of } V+V^{\top}\right)- \\
& \left(\# \text { neg eigenvalues of } V+V^{\top}\right)
\end{aligned}
$$

Ex: $\quad V+V^{\top}=\left(\begin{array}{ll}-2 & -1 \\ -1 & -2\end{array}\right)$
char poly $=\operatorname{det}\left(V+V^{T}-t I\right)$

$$
\begin{aligned}
& =\left(\begin{array}{cc}
-2-t & -1 \\
-1 & -2-t
\end{array}\right) \\
& =(2+t)^{2}-1 \\
& =t^{2}+4 t+3
\end{aligned}
$$

signature of K

$$
\Rightarrow \text { is }
$$

$\Rightarrow \quad$ is
\#pos eigenvals

- \#neg eigenvals

$$
=-2
$$

roots are eigenvalues:

$$
-2 \pm 1 \text { or }-3,-1
$$

Y_{2} neg. eigenvals

Alexander polynomial of unknot
SD $\Delta(K)=t^{2}-t+1=1 \Rightarrow K$ is not the unknot.
$4 D \sigma(K)=-2 \Rightarrow K$ is not slice

What about Alexander polynomial?

$$
\Delta=1 \quad \Delta=2 t^{2}-5 t+2=(t-2)(2 t-1)
$$

Both slice ~ cannot obstruct sliceness with full poly.

Prop: If K is slice then $|\Delta|_{t=-1} \mid$ is a square

$$
\begin{gathered}
E_{x}: 9_{46}: \Delta=2 t^{2}-5 t+2=(t-2)(2 t-1) \\
\left.\Delta\right|_{t=-1}=(-3)(-3)=3^{2}
\end{gathered}
$$

Ex: Trefoil, $\Delta=t^{2}-t+1$

$$
\left.\Delta\right|_{t=-1}=1+1+1=3
$$

Concordance
Def: Two knot K, J are concordant if there exists a smooth annulus in $\mathbb{R}^{3} \times I$ cobounding K and J

$$
\mathbb{R}^{\frac{\pi}{3}} \times 0 \quad \mathbb{R}^{3} \times 1
$$

Note: slice means concordant to unknot.

Concordance group (abelian)
Def: $G:=$ \{equivalence classes of knots with equivalence relation concordance $\}$.
Addition :

$$
\hat{\beta}+\hat{S}:=
$$

connected sum
Zero: unknot

$$
B^{3}+0=E^{5}
$$

Inverse?

$$
K \longrightarrow-K=\text { mirror image }
$$

Lemma For any knot $K \#-K$ is ribbon \Rightarrow equal to 0 in C.

Non-zero elements \leftrightarrow non slice knots
Ex: $\beta * 0$
7 elements of ∞-order Ta trefoil
consider $n T=T \# T \# \ldots \# T$

$$
\sigma(n T)=-2 n
$$

Ex: Figure eight $=F$ has order two since $F=-F \leadsto \partial F=0$

HW: Show

Open Q: 15 there any torsion besides 2-torsion? i.e. $K \# K \pm K$ slice but K not slice.

Open question (related to Freedman's surgery conjecture

$$
\left[\begin{array}{lll}
\hat{\xi} & \text { his } & \text { Fields medal } \\
\text { from } \\
\text { work } & \text { in } 80 \mathrm{~s} .
\end{array}\right]
$$

Is this link (topologically) slice. It's known to not be smoothly slice (A. Levine '14).

whitehead double of Borromean ringo?

Thank you!

