			•	•	•	·	·	·	·	•	•	·	•	•	•	•	·	•	•	·	•	·	·	·	•	•				
			· 1																											
			•		1	1		1	Ι.						۰ ۱			Т		់	•									
			•		K	r) (丌	Τì	5	$\mathbf{\Lambda}$			1 V	NA				11	nk	(i	n	Ch							
			•		I	` .I	10	/.	1. 1	1. /	9				10	5.		. •	, ,	11	ŚJ	.,,	1							
			•								J	•										. ~)							
			•				1	$\mathbf{\cap}$		4	-	7	iv	$\Lambda \Lambda$	ر) ه	7 <	-1	ุก	ιΛ		<u> </u>									
			•				_ . 1	\ .'		. ا		U	1.1		V	5	ור	U	.V		ノ									
			. L																											
								\mathbf{n}			•	<i>C</i>	•		11.		1		\sim	10		, .								
								Y	r (つ	••		\mathbf{v}	le	110	1	П			1C	-4									

(Low dimensional) Topology	
Study spaces that locally look like $R^{n} = \{(x_{1},, x_{n}) \mid x_{i} \in \mathbb{R}\}$ called n-dimensional manifolds $X_{1}(x)$	(પુ)
Ex n=2 (surfaces)	

													r R	••••••••••••••••••••••••••••••••••••••				
		· · ·	• •	•••	•	· ·			 				 · · ·] .			
											\rightarrow	· ·				7		
								· · · · · ·							•			
	· · ·		· · ·	· ·	•		Ð	\Diamond	· · ·									
					•	H	Ŧ	X		/ h h								
			· · ·	· · ·	•	· · ·	•		· · ·									

flat 00 U

Pop qui	Z				
Which	spaces	the	same	7 · · · ·	

How to distinguish th consider "knots" insid	iem? le of them
6"essential" curves	
	12 "essential" Curves

Remark: Any (compact, without boundary)	
3-dimensional manifold can be "drawn"	
(not unique) as a weighted link (knot	
with multiple components)	
$\frac{c_{in}}{be}$ $\frac{c_{in}}{national}$ $numbers$ $= 5' \times 5' \times 5'$	
1 3-dimensional torus	

How can A: Knot invar	we distinguish	knots?
		integer matrix polynomial group
in put	knot invaniant	ring
knot	Computer	field
Important: i	f two knots are	the same,
they	should have the	same output!

	7	۔ س	00		+ı	<u>J</u> F)e	S		D·	£		i	I V	ά	ri	01	nt	2	•															
· []	I)e ·	ç.,)e	d		Ü	si	n))		l i	a	91	ra	M		•	4	• • •	ſ	e	la ⁻	te	d	•	Ь	· ·	CI	19	pei	br	A		
	L	e	f		Ċ	r(K)	·	Ħ		0	f		C		vs	S	in	g		、 り	· ·	a	· · ·	E E	ìa	g		a	М	•			
	2	Ż	• .).	S		+	hi	\$		C	• •	ķ	-N	07	F .		5	<u>)</u> ו] 0	ir	י ה נ	rv	1+	 	7 . : .									

c(K) = min { # of crossing in a diagram for K} ⇐> K=unknot. ¥ c(K)=0 * Only knots with C(K)=3 is trefoil ⇒ K=figure-eight $\bigstar c(K) = 4$ more than one! R C(K) = 5

Ex: Fundamental group of K. $\pi_1(K) := \{ loops in \mathbb{R}^3 \} / (homotopy)''$ Very powerful group but is difficult to use. (see MATH 444).

Easier example: Let K be a knot. The K bounds a smoothly embedded "oviented" surface 5, called a Seifert SURFAR knot in white

d 0h push up on sur 'face linking # is spif mat lk#is O

Q. 15 the seifert matrix an invariant? No, depends on seifert surface chosen o matrix both unknots)

Can use seifert matrix to get a knot invariant - the Alexander polynomial
$\frac{\text{Define}}{\sum} (K) = \det(V(K) - \pm V(K)^T)$
$E_X: V = V(K) = \begin{pmatrix} -1 & -1 \\ 0 & -1 \end{pmatrix} \qquad V = \begin{pmatrix} -1 + t & -1 \\ t & -1 + t \end{pmatrix}$
$\Delta(K) = \operatorname{clet}(V - tV^{T}) = (t - N^{2} + t)$ [Note: K = trefoil in this example] = t^{2} - t + 1

This gives more info than $C(K)$ and can be extracted in many ways, including fro $T_i(K)$, the fundamental group.	ο
$ \sum_{\Delta = 1} \qquad \sum_{\Delta = t^2 - t + 1} \qquad \sum_{\Delta = t^2 - 3t + 1} $	
\Rightarrow all different knots	

Can also compute via diagrams					
$\sum $					
$\begin{array}{c} \cdot \cdot$					
$\Delta(0) = 1$					
$\Delta(L_{+}) - \Delta(L_{-}) = (t+t) / \Delta(L_{0})$					
due to J. Conway					

What about 4-dimensions?
4-dimensions in the most difficult and
most interesting dimension,
• try to push low-dimensional techniques
up (e.g. cut and paste, Heegaard diagrams/ trisections, Kirby diagrams)
• try to push high dimensional surgery techniques.

Start with a knot in $\mathbb{R}^3 \subseteq \mathbb{R}^4$ $(x,y,z) \rightarrow (x,y,z,0)$ the t=0 plane (time) t = time K= Knot in R What kind of surface can it bounds in R.

- Take Seifert surface in 1R ³ in push interior into 1R ⁴
- can get simpler surfaces in theory.
Def: A knot is slice if it bounds a smooth disk in R_{+}^{4} .
* = two different categories , smooth

Ex 1: (A nibbon knot)

is slice (does not bound disk in \mathbb{R}^3)

Lemma: A ribbon knot is always slice.

Recall level sets of surfaces from calculus Slices in time can combine the level sets to produce a surface

How to is not	show c slice?	C P	partico	ular	kna				
	A If's		ARD	***					
-no al	gonithm	to	deter	mine	2 if	C C			
given	knot	ÌS	slice		even		000	(γ)	
giben 1 open	knot problem		Slice		even	, , , , , , , , , , , , , , , , , , ,			

Thm (Piccirillo, 2018): The Conway knot is not slice. Annals of Math known to (topologically) Slice and is a mutant of a Slico Knot

How to show a knot or not slice.

Start with seifert surface and create seifert matrix V

Want to get special invariant that is "trivial" for slice knots. Prop: If a knot is slice then its signature is 0.

	signature of K	, σ(K)
Kno-	→ V - seifert matri'x	→ V+V ^T symmetnic matrix
Linear Alg	<u>gebra</u> ; V+V ^T has r	eal eigenvalues
Define	O(K) := (# pos eigenv ($\# neg eigenv$	values of $V + V^{T}$) – values of $V + V^{T}$)

$\underbrace{E_{X:}}_{E_{X:}} \qquad \forall + \forall T = \begin{pmatrix} -2 & -1 \\ -1 & -2 \end{pmatrix}$	
char poly = $det(V+V^T - tI)$	
$= \begin{pmatrix} -2-t & -1 \\ -1 & -2-t \end{pmatrix}$	signature of K is
$= (2+t)^2 - 1$	#pos eigenvals
$= t^2 + 4t + 3$	- # neg eigenvals
roots are eigenvalues:	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
-2 ± 1 or $-3, -1$	
2 neg. eigenval	S

				· · · · · · · · · · · · · · · · · · ·			Allex	i i i Cline	i i i cler	· · · · · · · · ·	σίι	n n c	, , , , , , , ,	ia		of			<u>n</u> k	
[3D]	∆(K)	· · ·			<u>1</u>			× > ×	. K.	ìS		10+	· · · ·	L-he	· · ·	Ur	۱k	'nc) }	
(4D)	σ(K)	· · · · · · · · · · · · · · · · · · ·	- 2	, , , , , , , , , , , , , , , , , , ,	<	is.	no	+	<u>5</u>]i	Ce										

What about	Alexander	polynomial	?
	$\Delta = 2t^2 - 5t + 2$	= (t-2)(2t-1)	· · · · · · · ·
Both slice ~	y cannot ok , sliceness	ostruct with full	poly.

<u>Prop:</u> If K is slice then $ \Delta _{t=-1}$	ίS	e Q	
Square.			
E_{X} ; 9_{46} ; $\Delta = 2t^{2} - 5t + 2 = (t - 2)(2t - 1)$			
$\Delta \Big _{t=-1} = (-3)(-3) = 3^{2}$			
$Ex: Trefoil, \Delta = t^2 - t + 1$			
$\Delta _{t=-1} = _{t+1} + _{t=1}$	3		

Concondance	
Def: Two knot K,J are concordant if	
there exists a smooth annulus in	
R ³ ×I cobounding K and -J	
$\mathcal{R}^3 \times 0 \qquad \mathcal{R}^3 \times 1$	
Note: slice means	
concordant to	
unknot.	

Concordance group	(abelian)
Def: C:= ¿equivalence clasoo with equivalence concordance ?	es of knots relation
Addition: 5+65:=	5 CS connected sum
Zero; unknot (S+(

	Inverse?	
	$K \longrightarrow -K = mirror image$	
· · ·	Lemma For any knot K#-K is ribbon	
	\Rightarrow equal to 0 in C.	

Non-zero elements ~> non slice	knots
$\frac{E_X}{C} \neq O$	
3 elements of 00 - order T= trefoil	
$consider nT = T \# T \# \cdots \# T$	
$\sigma(nT) = -2n$	

Ex: Figure eight = F has order two Since $F = -F \longrightarrow 2F = O$ HW: Show (G) = (G)· · · · ·_· F · · · Open Q: 15 there any torsion besides 2-torsion? i.e. K#K#K slice but K not slice.

Open question (related to conjecture	Freedman's surgery \$ [from his Fields medal]
· · · · · · · · · · · · · · · · · · ·	L work in 801]
Is this link (topologically)	slice. It's known
to not be smoothly sl	ice (A. Levine '14)
19	<pre></pre>
	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
)) of Borromean
	n'ngo?

								1					• \											
						/	//						•											
					/r		4	÷		(\wedge		//										
				<u>·</u>				()	\.			/		K										
									<u>\</u>		<u> </u>													
							•								1									
						` .																		
												.,												
									1	1	8		Λ											
									V		Ľ	/ [/ (
									.					<u> </u>	1									
								1	\bigcup						. `									