Fractal nature of the space of knotted curves

Monash University Colloquium Shelly Harvey Rice University

Recall, the 3 -dimensional sphere is

$$
\begin{aligned}
S^{3} & =\left\{\left.(z, w) \in \mathbb{C}^{2}| | z\right|^{2}+|w|^{2}=1\right\} \leq \mathbb{C}^{2} \\
& =\mathbb{R}^{3} \cup\{\infty\}
\end{aligned}
$$

Def: A Knot is a smooth embedding

$$
f: S^{1} \longleftrightarrow S^{3}
$$

where $S^{\prime}=\left\{\left.z| | z\right|^{2}=1\right\} \subseteq \mathbb{C}$ is the unit circle.

Exs:

Knots can arise from singularities.
Ex: Let C be the complex curve defined by

$$
z^{2}-w^{3}=0
$$

It has a singulanty at $(z, w)=(0,0)$.
Def: The link of this singularity is

$$
L=C \cap \partial B(\varepsilon)=\left\{(z, w)\left|(z, w) \in C,|z|^{2}+|w|^{2}=\varepsilon^{2}\right\}\right.
$$

 for small ε.

Note: L is the intersection of a 2 . and 3 -dimensional space in $\mathbb{C}^{2}=\mathbb{R}^{4}$ so it is a 1 -dimensional real curve (or multicurue-called a link).

Write $z=r e^{2 \pi i \theta}, \quad w=\operatorname{Re} e^{2 \pi i \psi} \quad w \mid r, R \geqslant 0$

- $z^{2}=W^{3} \Rightarrow r^{2}=R^{3} \Rightarrow z=R^{3 / 2} e^{2 \pi i \theta}$
$\Rightarrow 2 \theta=3 \psi \bmod z$ so
$\psi=2 / 3 \theta+k / 3$ for some $k \in \mathbb{R}$
- $|z|^{2}+|W|^{2}=\varepsilon^{2} \Rightarrow R^{3}+R^{2}=\varepsilon^{2}$
$\exists!R>0$ satisfying this.

In knot theory, one typically studies knots up to Isotopy: you can defirm one knot to the other without passing the knot through itself.

Two knots can be isotopic lout "look" very different!

Not allowed to "change crossings"!

Note: The unknot is the unique knot that bounds a (smooth) disk in S^{3} (or \mathbb{R}^{3})

Q. What are the knots in S^{3} (or \mathbb{R}^{3}) that bound a smooth disk in $B^{4}=\left\{\left.(z, w)| | z\right|^{2}+\left|w^{2}\right| \leq 1\right\}$ (or $\mathbb{R}_{-}^{4}=\left\{\left(x_{1}, \ldots, x_{4}\right) \mid x_{41} \leq 0\right\}$).
such a knot is called (smoothly) slice.

Fox and Milnor studied these in the 60's as a way to smooth singularities.

no singularities
If L is slice, can replace singularity with smooth disk $D \leq B^{4}$.

However, it turns out that the link of a singularity is never slice (except in the trivial case)!

Def: A knot $K \leq S^{3}=2 B^{4}$ is slice if $K=2 D$ is the boundary of a smoothly embedded disk D in B^{4}.

Equivalently:
A knot $K \leq \mathbb{R}^{3}=\partial B^{4}$, is slice if $K=\partial D$ with D a smoothly embedded in \mathbb{R}^{4}.

Ex: A knot is ribbon if it is the boundary of an immersed disk in \mathbb{R}^{3} (or s^{3}) with "ribbon singularities":

Observation: Every ribbon knot is slice. Pf: Take a small disk around singularity and push it into \mathbb{R}_{+}^{4} (or B^{4})
push interior of

into interior of \mathbb{R}_{-}^{4}.

What is left in \mathbb{R}^{3} :

To get disk in \mathbb{R}_{-}^{4}, attach lower hemisphere of

$$
S^{2}=\left\{(x, y, 0, v) \mid x^{2}+y^{2}+v^{2}=1\right\} \subseteq \mathbb{R}^{4}
$$

to red curve

$8 q$ is ribbon
Slice disk for 89

$\Rightarrow 8_{9}$ is slice but does not bound an embedded disk in \mathbb{R}^{3} !

Biggest open problem in knot concordance:
Slice -ribbon conjecture: Every (smoothly)
slice knot is ribbon.
Note: This problem is extremely difficult since every ribbon knot has a slice disk that is not even is isotopic to any ribbon disk!
Thee, cannot start with a slice disk and deform it to become a ribbon disk.
[For the experts]
Ex: Let S be a smoothly embedded non trivial $2-k n o t, s^{2} \hookrightarrow S^{4}$. Let $u=$ unknot, and $D=$ standard disk with $\partial D=U$. Push U into B^{4} and then take a connected sum with S. Then $U=2 S$ (S punctured) and $\pi_{1}\left(B^{4} \backslash S^{0}\right)=\pi_{1}\left(S^{4} \backslash S\right)$ is non-abelian since 5 is nontrivial.

Fact: If D is a ribbon disk for K then

$$
\pi_{1}\left(s^{3}, k\right) \xrightarrow{i_{*}} \not \pi_{1}\left(B^{4}, D\right)
$$

is surjective.
parched in
In example:

$\Rightarrow \dot{S}$ is a slice disk that is not isotopic to any ribbon disk.

Another example (using "movie moves") We can look at level set of a disk in \mathbb{R}_{+}^{4}.

946 is Slice

We can put an 4-dimensional equivalence relation on knots.

Def: Let K and J be knots in \mathbb{R}^{3}. We say that K is concordant to J if $K \times\{0\}$ and $\bar{J} \times\{1\}$ cobound a smoothly embedded annulus in $\mathbb{R}^{3} \times[0,1]$.

Concordance group
Let $C=\{$ knots $\} / \sim \quad k \sim J$ if they are concordant.
Then C is a group under connected sum.

$$
(\vec{\rho}+\underbrace{\Omega}=(\sqrt{\infty}
$$

* need oriented knots.

$$
\Omega=\text { identity }
$$

Inverse of K is \bar{K}.
For any $K, K \# \bar{K}$ is slice where

$\bar{K}=$ mirror image

Pf that $k \# \bar{K}$ is slice (ribbon)

Make immersed disk by lines from k to \bar{K}. The only self-intersection are ribbon singularities

C is a non finitely generated abelian group. We don't know what C is.

- C contains elements that are 2 -torsion.

$$
=
$$

4,

$\overline{4}$
$\Rightarrow 24_{1}=0$ and 4, is not slice $(4, \neq 0)$

- C contains elements al infinite order $\theta \# \cdots \neq\left(\begin{array}{l}\text { is never } \\ \text { slice. }\end{array}\right.$
Thy (Levine '60's) 子 surjective homomorphism

$$
C \xrightarrow{\pi} \underset{\uparrow}{\mathrm{~A}} \cong \mathbb{Z}^{\infty} \oplus \mathbb{Z}_{2}^{\infty} \oplus \mathbb{Z}_{4}^{\infty}
$$

algebraic concordance group (witt group of Seifert matrices)
Q. Are all torsion elements, 2-torsion?

- $\operatorname{ker}(\pi)$ is non-trivial (in higher.dimensons π is $a_{n} \cong$)

Thm (Casson-Gorton, Gilmer): $\operatorname{ker} \pi \neq 0$.

$$
k=(\sqrt{3}
$$

n-solvable filtration
Cochran-Orr-Teichner defined filtration

$$
\ldots c_{n}^{\alpha} \subseteq \ldots \leq f_{1} \leq f_{0.5} \leq f_{0} \leq C
$$

$K \in f_{0} \Leftrightarrow \operatorname{Arf}(K)=0 \quad$ Arf muariant
$K \in o f_{0.5} \Leftrightarrow k \in \operatorname{ker}(\pi) \quad$ Algebraically sliee
$K \in \mathcal{F}_{1.5} \Rightarrow$ Casson-Gordon invariants vanish.

Thm (Cochran-H-heidy): For each $n \geq 0$, $\mathcal{F}_{n} / \mathcal{F}_{n .5}$ contains $\underset{p(t)}{\oplus}\left(\mathbb{Z}^{\infty} \oplus \mathbb{Z}_{2}^{\infty}\right)$ symmentic irreducible
$n=0$: Milnor-Tristram, Levine (60's)
$n=1$: Jiang, Livingston
$n=2$: Cochran-Teichner

Operators on C
Def: A pattern P is a slice knot R and unknot η disjoint from R, such that η bounds a surface disjoint from R.

PiC $\longrightarrow C$ (not a homomorphism)

tie strands $\underset{\text { going to }}{\text { in }} \underset{K}{ }$ satellite operator.

$$
P: f_{n} \longrightarrow f_{n+1}
$$

Hence $P^{n}(k)=P\left(P(\ldots P(k)) \in \mathcal{F}_{n}\right.$ for any k with Art invariant zero. Exs of \mathbb{Z}^{∞} and $\mathbb{Z}_{2}^{\infty} \in \mathcal{F}_{n} / y_{n \cdot s}$ are constructed this way!
Q. When is P injective?
Conjecture: Q is injective

$Q(k)$ is slice \Leftrightarrow K is slice

Every such P would re-embed e into itself.

Known: There is a subgroup of C on which P^{n} is injective for $\forall n$.

Satellite operators give a way to construct elements. in g_{n}. The difficult part is to show $P^{n}(K)$ is not slier
(or even in of
ni $)!!!$

- Use invariants of knots such as L^{2}-signatures, d-inuts and I invariants from Heegaard Floer homology, etc.

Note: There is no known algorithm to determine if a knot is slice!!!
Q. Is the Conway knot slice?

known to topologically slice but unknown if it is smoothly slice!

Would like some notion of distance where mage $\left(P^{n}\right)$ is getting smaller as $n \rightarrow \infty$.

Symmetric gropes
Def: A grope of height 1 is a compact oriented surface G, with $|\partial \Sigma|=1$.

$$
G_{1}
$$

Let $\left\{\alpha_{1}, \ldots, \alpha_{2 g}\right\}$ bc a standard symplectic basis of curves for $H_{1}\left(G_{1}\right)$ on $G_{1}, g=$ genus $\left(G_{1}\right)$

A grope of height $n+1$ is obtained by attaching gropes of height n to $\alpha_{1}, \ldots, \alpha_{g}, \beta_{1}, \ldots, \beta_{g}$.

Def: A branched symmetric grope is defined as follows:

Let $\Sigma_{1: 1}$ be a compact connected orientable surface of genus g_{0} with a standard sympl. basis of curves $\left\{\alpha_{1}, \ldots, \alpha_{2 g}\right\}$ with $\alpha_{2 i-1}$ dual to $\alpha_{2 i}$. Attach to each α_{i}, a grope of height m_{i} s.t. $m_{2 i-1}=m_{2 i}$, no subsurface of which is a disk.

Let $n_{i}=m_{2 i}$.

$$
n_{1}=m_{1}=m_{2}=0 \quad n_{2}=m_{3}=m_{4}=2 \quad n_{3}=m_{5}=m_{6}=1
$$

Let ε be a branched symmetric grope.
Define $g_{1}=$ genus $\left(\Sigma_{1}\right)$
$g_{2}^{i}=$ sum of genera of first stage surfaces attached to $\alpha_{2 i-1}, \alpha_{2 i}$.
$g_{n_{n+1}}^{i}=$ sum of genera of n_{i} stage surfaces attached to $\alpha_{2 i-1}, \alpha_{2 i}$.

No g_{2}^{\prime} since $n_{1}=m_{1}=m_{2}$.

Note: For each $1 \leq i \leq g_{1}$ and $2 \leq k \leq n_{i}+1$,

$$
\begin{array}{ll}
& g_{k}^{i} \geqslant 2 g_{k-1}^{i} \\
\Rightarrow \quad & g_{k}^{i} \geqslant 2^{k-1}
\end{array}
$$

Let $q \geqslant 1$ be a real number and \sum a branched symmetric grope. Define

$$
\|\Sigma\|_{q}:=\sum_{i=1}^{g_{1}} \frac{1}{q^{n_{i}}}\left(1-\sum_{k=2}^{n_{i}+1} \frac{1}{g_{k}^{\prime}}\right)
$$

Def: If K, J are knots, define

$$
d^{q}(K, J):=\inf \left\{\|\Sigma\|_{q} \left\lvert\, \begin{array}{c}
\left.\sum_{\text {embedded in }}^{\text {is } S^{3} \times I \text { with boundary }}\right\} \\
K \times\{03 \text { and } \bar{J} \times\{1\}
\end{array}\right.\right\}
$$

Note: Any two knot cobound a surface.

Ex: If K has bounds a genus 1 surface ε and $\operatorname{Arf}(k) \neq 0$ then k cannot bound a (symmetric) height 2 grope. So

$$
d^{9}(k, u n k n o t)=g(\Sigma)=1 .
$$

Ex $\quad \frac{1}{\partial q} \leq d^{q}(\leftrightarrow,(\Omega)) \leq \frac{\partial 7}{16 q}$

$$
\|\Sigma\|_{q}=\left(\frac{1}{q^{0}} \cdot 1\right)+\frac{1}{q^{2}}\left(1-\frac{1}{3}-\frac{1}{9}\right)+\frac{1}{q^{\prime}}\left(1-\frac{1}{4}\right)=1+\frac{5}{9 q^{2}}+\frac{3}{4 q}
$$

Note: The only way one could get zero is to have a (symmetric) grope of arbitrarily long height with all genus 1 surfaces at each stage, or an annulus.

$$
\|\Sigma\|_{q}=\frac{1}{q^{n_{1}}}\left(1-\frac{1}{2}-\frac{1}{4}-\cdots-\frac{1}{2^{n_{1}}}\right) \rightarrow 0 \quad \text { as } n_{1} \rightarrow \infty
$$

Prop (Cochran-H-Powell): For $q \geqslant 1$, the function d^{q} determine a psendo-meturic on C.

- Need to show $\|\Sigma\|_{q} \geqslant 0$ for any Σ.

Prop: If K does not bound a grope of height n then

$$
d(k, \text { unknot }) \geqslant \frac{1}{(2 q)^{n-2}}
$$

The (colhran-Orr-Teidhner): If k bounds a height n grope then $k \in \mathcal{F}_{n-2}$

Prop(Cochroa-H-Powell): If P is a pattern then $P: C \rightarrow C$ is a contraction w.r.t. d^{q} for $q>g W(P)=\#$ of times R goes through η.

Thy (Cochran-H-Powell): For any $q>1$ there exists uncountable many sequences of knots $\left\{k_{i}\right\}$ sit.

$$
\begin{array}{ll}
d^{q}\left(k_{i}, \text { unknot }\right)>0 & \forall i \\
d^{q}\left(k_{i}, \text { unknot }\right) \rightarrow 0 & \text { as } \quad i \rightarrow \infty .
\end{array}
$$

Hence the topology on $\left(e, d^{q}\right)$ is not discrete for $q>1$.

