Fractal nature of the Space of knotted curves

Monash University Colloquium Shelly Harvey Rice University

Recall, the 3-dimensional sphere is

$$S^{3} = \{(z,w) \in \mathbb{C}^{2} | |z|^{2} + |w|^{2} = 1\} \leq \mathbb{C}^{2}$$

 $= |\mathbb{R}^{3} \cup \{\infty\}$

Def: A <u>knot</u> is a smooth embedding $f: S' \longrightarrow S^3$ where $S' = \{z \mid |z|^2 = 1\} \subseteq C$ is the unit circle.

Knots can arise from singularities. Ex: Let C be the complex curve defined by $Z^{2} - W^{3} = 0$ It has a singularity at (z,w)=(0,0). Def: The link of this singularity is $L = C \cap \partial B(\varepsilon) = \{(z, w) \mid (z, w) \in C, |z|^2 + |w|^2 = \varepsilon^2\}$ for small E. ball of radius ~ (0,0) E

Note: L is the intersection of a 2- and 3-dimensional space in C² = IR⁴ so it is a 1-dimensional real curve (or multicurve - called a link).

Write
$$z = re^{2\pi i\theta}$$
, $w = Re^{2\pi i\Psi}$ where $r, R \ge 0$
• $z^2 = W^3 \implies r^2 = R^3 \implies z = R^{3/2}e^{2\pi i\theta}$
 $\implies 2\theta = 3\Psi \mod z$ so
 $\Psi = \frac{2}{3}\theta + \frac{k}{3}$ for some $k \in \mathbb{R}$

•
$$|z|^2 + |w|^2 = \varepsilon^2 \implies R^3 + R^2 = \varepsilon^2$$

 $\exists ! R > 0 \quad \text{satisfying this.}$

In knot theory, one typically studies knots up to <u>isotopy</u>: you can defirm one knot to the other without passing the knot through itself.

Not allowed to "change crossings"!

Q. What are the knots in S³ (or \mathbb{R}^3) that bound a smooth disk in $\mathbb{B}^4 = \{(z,w) \mid |z|^2 + |w| \le 1\}$ (or $\mathbb{R}^4 = \{(x_1, \dots, x_n) \mid x_n \le 0\}$). Such a knot is called (smoothly) <u>slie</u>. Fox and Milnor studied these in the 60's as a way to smooth singularities.

no singularities

If L is slice, can replace singularity with smooth disk $D = B^{4}$.

However, it turns out that the link of a singularity is never slice (except in the trivial case)!

Def: A knot $K \leq S^2 \Rightarrow B^4$ is slice if $K \equiv \Im D$ is the boundary of a smoothly embedded disk D in B^4 .

Observation: Every ribbon knot is slice. Pf: Take a small disk around singularity and push it into \mathbb{R}_{+}^{μ} (or B⁴)

what is left in
$$\mathbb{R}^3$$
:
To get disk in
 \mathbb{R}^4 , attach lower
hemisphere of
 $S^2 = \{(x, y_1, 0, v) \mid x^2 + y^2 + v^2 = 1\} = \mathbb{R}^4$

to red curve

 \Rightarrow 8_q is slice but does not bound an embedded disk in \mathbb{R}^3 !

Biggest open problem in knot concordance: Slice-ribbon conjecture : Every (smoothly) slice knot is ribbon. Note: This problem is extremely difficult since every ribbon knot has a slice disk that is not even is isotopic to any ribbon disk!

Thuo, cannot start with a slice disk and deform it to become a ribbon disk.

[For the experts]

Ex: Let S be a smoothly embedded non-trivial z-knot, $S^2 \rightarrow S^4$. Let U= unknot, and D=standard disk with 2D=U. Push Il into B" and then take a connected sum with S. Then U=2\$ (5 punctured) and $\pi_1(B^4 \ s^{\circ}) = \pi_1(S^4 \ s)$ is non-abelian since s is non-trivial.

Fact:If D is a ribbon disk for K then
$$T_1(S^3 \setminus K) \xrightarrow{i_*} T_1(B^4 \cdot D)$$
is surjective.parted inIn example: $T_1(S^3 \cdot unknot) \longrightarrow T_1(B^4 \cdot S)$ R_2 R_3 R_4 R_7 R

 \mathbb{R}^{4}_{+} (t=0)

 \mathbb{R}^{4}_{+} (t=0)

 \mathbb{R}^{4}_{+} (t=0)

 \mathbb{R}^{4}_{+} (t=0)

 \mathbb{R}^{4}_{+} (t=0)

We can put an 4-dimensional equivalence relation on knots.

Def: Let K and J be knots in IR³. We say that K is <u>concordant</u> to J if K× {o} and J× {i} cobound a smoothly embedded annulus in $\mathbb{R}^3 \times [0,1]$ K× 303 A= annuluo

$$\frac{Concordance group}{Let C = \frac{knots}{\sqrt{\pi G}} \quad k \sim J \text{ if they are concordant.}}$$
Then C is a group under connected sum.
$$(C) = \frac{1}{\sqrt{G}} = (C) \quad (C) \quad$$

* need oriented knots.

Pf that K#K is slice (ribbon)

Make immersed disk by lines from K to K. The only self-intersection are ribbon singularities

· C contains elements of minite order () # # () is never slice. Thm (Levine '60's) I surjective homomorphism $C \xrightarrow{\pi} A \cong Z \oplus Z_2 \oplus Z_4^{\circ}$ algebraic concordance group (Nitt group of Seifert matrices)

Q. Are all torsion elements, 2-torsion?

- ker(π) is non-trivial (in higher dimension
 π is an ≅)
- Thm (Casson-Gordon, Gilmer): $\ker \pi \neq 0$.

K=trefoil

n-solvable filtration

Cochran-Orr-Teichner defined filtration

$$\therefore \subseteq \mathcal{F}_{h} \subseteq \ldots \subseteq \mathcal{F}_{j} \subseteq \mathcal{F}_{j} \subseteq \mathcal{F}_{j} \subseteq \mathcal{F}_{j} \subseteq \mathcal{C}$$

 $K \in \mathcal{Y}, \Leftrightarrow Arf(K) = 0$ Arf invariant $K \in \mathcal{Y}_{0.5} \iff K \in ker(\pi)$ Algebraically slive $K \in \mathcal{Y}_{1.5} \implies Cascon-Gordon$ invariants vanish.

$$\frac{\text{Thm}\left(\text{Cochran-H-heidy}\right): \text{For each } n \neq 0, \\ \overset{\text{of}}{\text{J}_n/\text{vf}_{n.5}} \text{ (ontains } \bigoplus_{\substack{p(t) \\ \text{symmetric} \\ \text{irreducible}}} \left(\overline{Z}^{\infty} \partial \overline{Z}^{\infty}_{2} \right) \\ \end{array}$$

Operators on C

Def: A pattern P is a slice knot R and unknot 7 disjoint from R, such that 7 bounds a surface disjoint from R.

$$P: \mathcal{F}_n \longrightarrow \mathcal{F}_{n+1}.$$

Q. When is P injective? (onjecture: Q is mjective Q(K) is slice ⇔ K is slice Q(K)=

Every such P would re-embed C into itself.

Known: There is a subgroup of
$$C$$
 on which P° is injective for $\forall n$.

Satellite operators give a way to construct elements in In. The difficult part is to show Pⁿ(K) is not slier (or even in In.s)!!!

- Use invariants of knots such as L²-signatures, d-invts and I invariants from Heegaard Floer homology, etc.

Would like some notion of distance where mage (P^n) is getting smaller as $n \rightarrow \infty$.

Symmetric gropes
Def: A grope of height 1 is a compact oriented
surface
$$G_i$$
 with $|\partial z| = 1$.
 G_i

Let $\{d_1, \dots, d_{2q}\}$ be a standard symplectic basis of curves for $H_1(G_1)$ on G_1 , $g = genus(G_1)$

A grope of height n+1 is obtained by attaching gropes of height n to $\alpha_1, \ldots, \alpha_9, \beta_1, \ldots, \beta_9$.

Def: A branched symmetric grope is defined as follows:

Let $\Sigma_{1:1}$ be a compact connected orientable surface of genus g_1 , with a standard sympl. baois of curves $\{\alpha_1, \dots, \alpha_{2g}\}$ with α_{2i-1} dual to α_{2i} . Atlach to each α_i , a grope of height M_i s.t. $M_{2i-1} = M_{2i}$, no subsurface of which is a disk.

Let
$$n_i = m_{2i}$$

Let
$$\Sigma$$
 be a branched symmetric grope.
Define $q_1 = genus(\Sigma_1)$
 $g'_2 = sum$ of genera of first stage
surfaces attached to $\alpha_{2i-1}, \alpha_{2i}$.
 $g'_{n+1} = sum$ of genera of Λ_i stage
surfaces attached to $\alpha_{2i-1}, \alpha_{2i}$.

No $g_{2}^{(1)}$ since $N_{1} = M_{1} = M_{2}$. 0 $g_2^3 = 2 + 2 = 4$ 0 000 0 0 $q_2^2 =$ Q 2 2=3 \bigcirc α_2 $|\alpha_4|$ α_6 \bigcirc α_1 α_3 α_5

Let q>1 be a real number and
$$\Sigma$$
 a
branched symmetric grope. Define
 $\|\Sigma\|_{q} := \sum_{i=1}^{g_{i}} \frac{1}{q^{n_{i}}} \left(1 - \sum_{k=2}^{n_{i+1}} \frac{1}{g_{k}}\right)$
 $\underline{Def}: If K, J$ are knots, define
 $J^{9}(K, J) := \inf \{ \|\Sigma\|_{q} \mid \Sigma$ is a branched symmetric grope
embedded in $S^{3} \times I$ with boundary
 $K \times \{0\}$ and $J \times \{1\}$
Note: Any two knot (obound a surface.

Ex: If K has bounds a genus 1 surface
$$\Xi$$

and Arf(K) $\neq O$ then K cannot bound
a (symmetric) neight 2 grope, So
 $d(K, unknot) = g(\Xi) = 1$.

$$\frac{\mathrm{Exi}}{\mathrm{d}_{\mathrm{g}}} \stackrel{1}{=} \mathrm{d}^{\mathrm{g}}(\mathrm{G},\mathrm{G}) \stackrel{2}{=} \frac{\mathrm{d}^{\mathrm{g}}}{\mathrm{lbg}}$$

-

 $\|\Sigma\|_{q} = \left(\frac{1}{q_{0}^{0}} \cdot 1\right) + \frac{1}{q_{1}^{2}}\left(1 - \frac{1}{3} - \frac{1}{q}\right) + \frac{1}{q_{1}^{1}}\left(1 - \frac{1}{4}\right) = 1 + \frac{5}{9q_{1}^{2}} + \frac{3}{4q}$ 1=3 . 1= 2 i= 1

$$\|\mathbf{z}\|_{q} = \frac{1}{q_{1}^{n_{1}}} \left(1 - \frac{1}{2} - \frac{1}{4} - \dots - \frac{1}{2^{n_{1}}} \right) \longrightarrow \mathbf{0} \quad \text{as } n_{1} \Rightarrow \infty$$

Prop: It K does not bound a grope of height n then $d(K, unknot) > \frac{1}{(2q)^{n-2}}$.

Thm (courran - Orr - Teichner): If K bounds
a height h grope then
$$K \in \mathcal{F}_{n-2}$$
.

Thm (Cochran-H-Powell): For any
$$g>1$$

there exists uncountably many sequences of
knots $\{k_i\}$ s.t.
 $d(k_i, unknot) > 0 \quad \forall i$ but
 $d^{Q}(k_i, unknot) \rightarrow 0 \quad as \quad (i \rightarrow a)$
Hence the topology on (C, d^{Q}) is not
discrete for $g>1$.