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Fix a global field k , and let Ωk be the set of places of k .
Let S be a class of nice (smooth, projective, geometrically
integral) k-varieties.

Definition
We say that S satisfies the Hasse principle if for all X ∈ S,

X (kv ) 6= ∅ for all v ∈ Ωk =⇒ X (k) 6= ∅.

Definition
We say that a nice k-variety X satisfies weak approximation
if the embedding

X (k) ↪→
∏

v∈Ωk

X (kv )

has dense image for the product of the v -adic topologies.
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In the second lecture we sketch the proof of the following
theorem.

Theorem
The class of del Pezzo surfaces (over a global field) of
degree ≥ 5 satisfies the Hasse principle. These surfaces also
satisfy weak approximation.

Del Pezzo surfaces of lower degree need not enjoy these
arithmetic properties.

d ≥ 5 d = 4 d = 3 d = 2 d = 1

HP X [BSD75] [SD62] [KT04] X
WA X [CTS77] [SD62] [KT08] [VA08]

(1) Check mark (X) means: phenomenon holds.
(2) A reference points to a counterexample in the literature.
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Since X is a nice k-variety, we have
∏

v X (kv ) = X (Ak).
In 1970, Manin used the Brauer group of the variety to
construct an intermediate “obstruction set” between X (k)
and X (Ak):

X (k) ⊆ X (Ak)Br ⊆ X (Ak). (1)

In fact, the set X (Ak)Br already contains the closure of
X (k) for the adelic topology:

X (k) ⊆ X (Ak)Br ⊆ X (Ak). (2)

This set may be used to explain the failure of the Hasse
principle and weak approximation on many kinds of varieties.
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Definition
Let X be a nice k-variety, and assume that X (Ak) 6= ∅. We
say that X is a counter-example to the Hasse principle
explained by the Brauer-Manin obstruction if

X (Ak)Br = ∅.

Definition
Let X be a nice k-variety. We say that X is a
counter-example to the weak approximation explained by the
Brauer-Manin obstruction if

X (Ak) \ X (Ak)Br 6= ∅.
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Two definitions for the Brauer group

An Azumaya algebra on a scheme X is an OX -algebra A
that is coherent and locally free as an OX -module, such that
the fiber A(x) := A⊗OX ,x

k(x) is a central simple algebra
over the residue field k(x) for each x ∈ X .

Two Azumaya algebras A and B on X are similar if there
exist locally free coherent OX -modules E and F such that

A⊗OX
EndOX

(E) ∼= B ⊗OX
EndOX

(F).

The Azumaya Brauer group BrAz X of a scheme X is the set
of similarity classes of Azumaya algebras on X , with
multiplication induced by tensor product of sheaves.

The Brauer group of a scheme X is Br X := H2
ét

(
X ,Gm

)
.
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Comparison

If F is a field, then

BrAz(Spec F ) ∼= Br Spec F ∼= Br F

For any scheme X there is a natural inclusion

BrAz X ↪→ Br X .

Theorem (Gabber, de Jong)

If X is a scheme endowed with an ample invertible sheaf then
the natural map BrAz X ↪→ Br X induces an isomorphism

BrAz X
∼−→ (Br X )tors.
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If X is an integral, regular and quasi-compact scheme, then
the inclusion Spec k(X )→ X gives rise to an injection
Br X ↪→ Br k(X ).

On the other hand, the group Br k(X ) is torsion, because it
is a Galois cohomology group.

Corollary

Let X be a nice variety over a field. Then

BrAz X ∼= Br X .
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Let X be a nice variety over a global field k. For A ∈ Br X
and K/k a field extension there is an evaluation map

evA : X (K )→ Br K , x 7→ Ax ⊗OX ,x
K .

We put these maps together to construct a pairing

φ : Br X×X (Ak)→ Q/Z, (A, (xv )) 7→
∑
v∈Ωk

invv (evA(xv )),

where invv : Br kv → Q/Z is the invariant map from LCFT.
For A ∈ Br X we obtain a commutative diagram

X (k) //

evA

��

X (Ak)

evA
��

φ(A,−)

((QQQQQQQQQQQQQQ

0 // Br k //
⊕

v Br kv

P
v invv // Q/Z // 0
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Manin’s observation is that an element A ∈ Br X can be
used to “carve out” a subset of X (Ak) that contains X (k):

X (Ak)A :=
{

(xv ) ∈ X (Ak) : φ(A, (xv )) = 0
}
.

We call
X (Ak)Br :=

⋂
A∈Br X

X (A)A

the Brauer-Manin set of X .
if Q/Z is given the discrete topology, then the map
φ(A,−) : X (Ak)→ Q/Z is continuous, so X (Ak)A is a
closed subset of X (Ak). In particular,

X (k) ⊆ X (Ak)Br.
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If A ∈ im(Br k → Br X ) =: Br0 X , then X (Ak)A = X (Ak).
This means that to compute X (Ak)Br, it is enough to
consider X (Ak)A, as A runs through a set of representatives
of the group Br X/Br0 X . When Br Xksep = 0, the
Hochschild-Serre spectral sequence in étale cohomology
(with Gm-coefficients) can help us compute this group. The
long exact sequence of low degree terms is

0→ Pic X → (Pic Xksep)Gal(ksep/k) → Br k

→ ker(Br X → Br Xksep)→ H1
(

Gal(ksep/k),Pic Xksep

)
→ H3

(
Gal(ksep/k), ksep∗).
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If k is a global field, then H3
(

Gal(ksep/k), ksep∗) = 0 (Tate).

If X (Ak) 6= ∅, then the map (Pic Xksep)Gal(ksep/k) → Br k is
the zero map and hence we have

Pic X
∼−→ (Pic Xksep)Gal(ksep/k).

If X is a geometrically rational surface, then Br Xksep = 0.
Put this all together and we get

Proposition

Let X be a del Pezzo surface over a global field k. Assume
that X (Ak) 6= ∅. Then we have

Br X/Br k
∼−→ H1

(
Gal(ksep/k),Pic Xksep

)
.
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X : del Pezzo surface over a global field k of degree d ≤ 7.
Let K be the smallest extension of k in ksep over which all
exceptional curves of X are defined. The group Pic Xksep is
generate by the class of exceptional curves, so

Pic XK
∼= Pic Xksep ,

and moreover, the inflation map

H1
(

Gal(K/k),Pic XK

)
→ H1

(
Gal(ksep/k),Pic Xksep

)
is an isomorphism (here we assume that X (Ak) 6= ∅).
One way of constructing Brauer-Manin obstructions on del
Pezzo surfaces of small degree begins by computing the
group H1

(
Gal(K/k),Pic XK

)
on “reasonable” surfaces.



Obstructions to
the Hasse principle

and weak
approximation on
del Pezzo surfaces

of low degree

Tony
Várilly-Alvarado
Rice University

Recap

Brauer-Manin set I

Brauer groups

Brauer-Manin set
II

dP1s

Many authors have pursued this set of ideas, not just for del
Pezzo surfaces: Manin, Swinnerton-Dyer, Colliot-Thélène,
Kanevsky, Sansuc, Skorobogatov, Bright, Bruin, Flynn,
Logan, Kresch, Tschinkel, Corn, van Luijk, V-A, etc (the list
is not meant to be comprehensive).

We will compute an example to weak approximation on a del
Pezzo surface of degree 1.
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Del Pezzo surfaces of degree 1: quick review

Anticanonical model of X/k is a smooth sextic hypersurface
in Pk(1, 1, 2, 3) := Proj(k[x , y , z ,w ]), e.g.,

w 2 = z3 + Ax6 + By 6, A,B ∈ k∗.

Conversely, any smooth sextic in Pk(1, 1, 2, 3) is a dP1.
Xksep is isomorphic to the blow-up of P2

ksep at 8 points in
general position. In particular,

Pic Xksep ∼= Z9.
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Fix a primitive sixth root of unity ζ in Q.

Theorem (V-A’08)

Let X be the del Pezzo surface of degree 1 over k = Q(ζ)
given by

w 2 = z3 + 16x6 + 16y 6

in Pk(1, 1, 2, 3). Then X is k-minimal and there is a
Brauer-Manin obstruction to weak approximation on X .
Moreover, the obstruction arises from a cyclic algebra class
in Br X/Br k.
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Need the action of Gal(ksep/k) on Pic Xksep explicitly. Recall
that Pic Xksep is generated by the exceptional curves of X .

Theorem (V-A’08)

Let X be a del Pezzo surface of degree 1 over a field k,
given as a smooth sextic hypersurface V (f (x , y , z ,w)) in
Pk(1, 1, 2, 3). Let

Γ = V (z − Q(x , y),w − C (x , y)) ⊆ Pksep(1, 1, 2, 3),

where Q(x , y) and C (x , y) are homogenous forms of degrees
2 and 3, respectively, in ksep[x , y ]. If Γ is a divisor on Xksep ,
then it is an exceptional curve of X . Conversely, every
exceptional curve on X is a divisor of this form.
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Exceptional curves on w 2 = z3 + 16x6 + 16y 6

Let

Q(x , y) = ax2 + bxy + cy 2,

C (x , y) = rx3 + sx2y + txy 2 + uy 3,

Then the identity C (x , y)2 = Q(x , y)3 + 16x6 + 16y 6 gives

a3 − r 2 + 16 = 0,

3a2b − 2rs = 0,

3a2c + 3ab2 − 2rt − s2 = 0,

6abc + b3 − 2ru − 2st = 0,

3ac2 + 3b2c − 2su − t2 = 0,

3bc2 − 2tu = 0,

c3 − u2 + 16 = 0.
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We can use Gröbner bases to solve this system of equations.
We get 240 solutions, one for each exceptional curve of the
surface. The action of Gal(k/k) can be read off from the
coefficients of the equations of the exceptional curves.
Sample exceptional curve: (s = 3

√
2, ζ = (1 +

√
−3)/2)

z = (−s2ζ + s2 − 2s + 2ζ)x2 + (2s2ζ − 2s2 + 3s − 4ζ)xy

+ (−s2ζ + s2 − 2s + 2ζ)y 2,

w = (2s2ζ − 4s2 + 2sζ + 2s − 6ζ + 3)x3

+ (−5s2ζ + 10s2 − 6sζ − 6s + 16ζ − 8)x2y

+ (5s2ζ − 10s2 + 6sζ + 6s − 16ζ + 8)xy 2

+ (−2s2ζ + 4s2 − 2sζ − 2s + 6ζ − 3)y 3.
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The Picard group of X
Let s = 3

√
2. Consider the exceptional curves on X given by

E1 = V (z + 2sx2
,w − 4y3),

E2 = V (z − (−ζ3 + 1)2sx2
,w + 4y3),

E3 = V (z − 2ζ3sx2 + 4y2
,w − 4s(ζ3 − 2)x2y − 4(−2ζ3 + 1)y3),

E4 = V (z + 4ζ3sx2 − 2s2(2ζ3 − 1)xy − 4(−ζ3 + 1)y2
,

w − 12x3 − 8s(−ζ3 − 1)x2y − 12ζ3s2xy2 − 4(−2ζ3 + 1)y3),

E5 = V (z + 4ζ3sx2 − 2s2(ζ3 − 2)xy − 4ζ3y2

w + 12x3 − 8s(2ζ3 − 1)x2y − 12s2xy2 − 4(−2ζ3 + 1)y3),

E6 = V (z − 2s(−s2
ζ3 + s2 − 2s + 2ζ3)x2 − 2s(2s2

ζ3 − 2s2 + 3s − 4ζ3)xy − 2s(−s2
ζ3 + s2 − 2s + 2ζ3)y2

,

w − 4(2s2
ζ3 − 4s2 + 2sζ3 + 2s − 6ζ3 + 3)x3 − 4(−5s2

ζ3 + 10s2 − 6sζ3 − 6s + 16ζ3 − 8)x2y

− 4(5s2
ζ3 − 10s2 + 6sζ3 + 6s − 16ζ3 + 8)xy2 − 4(−2s2

ζ3 + 4s2 − 2sζ3 − 2s + 6ζ3 − 3)y3),

E7 = V (z − 2s(−s2 − 2sζ3 + 2s + 2ζ3)x2 − 2s(−2s2
ζ3 + 3s + 4ζ3 − 4)xy − 2s(−s2

ζ3 + s2 + 2sζ3 − 2)y2
,

w − 4(2s2
ζ3 + 2s2 + 2sζ3 − 4s − 6ζ3 + 3)x3 − 4(10s2

ζ3 − 5s2 − 6sζ3 − 6s − 8ζ3 + 16)x2y

− 4(5s2
ζ3 − 10s2 − 12sζ3 + 6s + 8ζ3 + 8)xy2 − 4(−2s2

ζ3 − 2s2 − 2sζ3 + 4s + 6ζ3 − 3)y3),

E8 = V (z − 2s(s2
ζ3 + 2sζ3 + 2ζ3)x2 − 2s(2s2 + 3s + 4)xy − 2s(−s2

ζ3 + s2 − 2sζ3 + 2s − 2ζ3 + 2)y2
,

w − 4(−4s2
ζ3 + 2s2 − 4sζ3 + 2s − 6ζ3 + 3)x3 − 4(−5s2

ζ3 − 5s2 − 6sζ3 − 6s − 8ζ3 − 8)x2y

− 4(5s2
ζ3 − 10s2 + 6sζ3 − 12s + 8ζ3 − 16)xy2 − 4(4s2

ζ3 − 2s2 + 4sζ3 − 2s + 6ζ3 − 3)y3).
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The Picard group of X

...as well as the exceptional curve

E9 = V (z − 2ζ3s2xy ,w − 4x3 + 4y 3).

Then

Pic Xk = Pic XK
∼=

(
8⊕

i=1

Z[Ei ]

)
⊕ Z[H] = Z9,

where H = E1 + E2 + E9.
The exceptional curves of X are defined over K := k( 3

√
2).

Let G := Gal(K/k) = 〈ρ〉. Note that G is cyclic.
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Strategy for inverting
Br X/ Br k → H1

(
Gal(k sep/k), Pic Xksep

)
Br X/Br k

∼ //
_�

��

H1
(

Gal(ksep/k),Pic Xksep

)

Br k(X )/Br k H1
(

Gal(K/k),Pic XK

)inf ∼

OO

∼
��

Brcyc(X ,K )
?�

OO

ker NK/k/ im ∆
ψ

∼
oo

Brcyc(X ,K ) :=

{
classes [(K/k , f )] in the image of the

map Br X/Br k → Br k(X )/Br k

}
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The group Brcyc(X , K )

Explicitly, we have maps

NK/k : Pic XK → Pic X ∆: Pic XK → Pic X

[D] 7→ [D + ρD + ρ2
D] [D] 7→ [D − ρD]

We compute

ker NK/k/ im ∆ ∼= (Z/3Z)4;

and the classes

h1 = [E2 + 2E8 − H], h2 = [E5 + 2E8 − H],

h3 = [E7 + 2E8 − H], h4 = [3E8 − H]

of Pic XK give a set of generators for this group.
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An Azumaya Algebra

The group isomorphism

ψ : ker NK/k/ im ∆→ Brcyc(X ,K )

is given by
[D] 7→ [(K/k , f )],

where f ∈ k(X )∗ is any function such that NK/k(D) = (f ).

Consider the divisor class h1 − h2 = [E2 − E5] ∈ Pic XK . It
gives rise to a cyclic algebra A := (K/k, f ) ∈ Brcyc(X ,K ),
where f ∈ k(X )∗ is any function such that

NK/k(E2 − E5) = (f ),
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To wit, f is a function with zeroes along

E2 + ρE2 + ρ2
E2

and poles along
E5 + ρE5 + ρ2

E5.

Using the explicit equations for E2 and E5 we find

f :=
w + 4y 3

w + (2ζ + 2)zy + (−8ζ + 4)y 3 + 12x3

does the job.
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The Brauer-Manin obstruction

Recall X is given by w 2 = z3 + 16x6 + 16y 6. Note that

P1 = [1 : 0 : 0 : 4] and P2 = [0 : 1 : 0 : 4].

are in X (k).
Let p be the unique prime above 3 in k . We compute

invp(A (P1)) = 0 and invp(A (P2)) = 1/3.

Let P ∈ X (Ak) be the point that is equal to P1 at all places
except p, and is P2 at p. Then∑

v

invv (A (Pv )) = 1/3,

so P ∈ X (Ak) \ X (Ak)Br and X is a counterexample to
weak approximation.


